TEXAS A&M GRILIFE EXTENSION

Supplementation Basics for Cow-Calf Operations

Jason Banta, Ph.D., PAS Associate Professor and Extension Beef Cattle Specialist Texas A&M AgriLife Extension Service Texas A&M University Overton, TX

Hay Feeding Scenarios

cheap and easy

- · easiest and least expensive
- frequent labor when needed, less expensive
- · less consistent labor, more expensive

What 3 primary things affect supplementation of energy & protein?

> BCS forage & hay quality nutrient requirements

as forage quality declines forage intake decreases

- low quality forage = low intake
- high quality forage = higher intake

Factors Affecting Forage Quality

- maturity
- species
- temperature
- $\cdot \,$ rained on hay

Maturity					
Interval between cuttings	% TDN	Yield, tons/acre			
3 weeks	65.2	7.9			
4 weeks	61.9	8.4			
5 weeks	59.3	9.2			
6 weeks	58.0	10.3			
8 weeks	54.1	10.2			
12 weeks	51.0	10.4			
 Coastal bermudagrass study in Georgia Glen Burton 					

Species

cool season > warm season annuals > perennials

- winter annuals (i.e. ryegrass, rye, oats, etc.)
- crabgrass
- johnsongrass
- Tifton 85
- bahiagrass
- bermudagrass

		No. Red 1	
Components	1	As red	DM
A Mojeture	7	9 1 1	
6 Moiscure	1	3.1	
8 Dry Matter	I	90.9	
% Crude Protein	L	6.2	6.8
% Adjusted Crude Protein	I	6.2	6.8
% Acid Detergent Fiber	I	45.3	49.8
% Neutral Detergent Fiber	1	56.1	61.8
8 NFC	I	22.3	24.5
8 TDN	I	52	<mark>,57</mark>
NEL, Mcal/Lb	L	.46	.51
NEM, Mcal/Lb	L	. 46	. 51
NEG, Mcal/Lb	I	7 /1	.26
_	L		
IVTD 48hr, % of DM			69
NDFD 48hr, % of NDF 5/	%	SIDN J	50

Components	As Fed DM
<pre>% Moisture % Dry Matter % Crude Protein % Adjusted Crude Protein % Acid Detergent Fiber</pre>	18.21% Ash 1 6.2 6.8 6.8 6.8 1 45.3 49.8
<pre>% Neutral Detergent Fib % NFC % Ash % TUN</pre>	er 56.1 61.8 11.8 13.0 16.55 18.21
NEL, Mcal/Lb NEM, Mcal/Lb NEG, Mcal/Lb	.37 .41 .31 .34 .0 .09
IVTD 48hr, % of DM NDFD 48hr, % of NDF	46% TDN 69

Forage Testing Laboratories Dairy One Forage Lab Ithaca, NY; 800-344-2697 <u>http://www.dairyone.com</u> NIR can be used if lab has appropriate database wet chemistry will always work

Components	As Fed	DM
% Moisture	8.0 1	
% Drv Matter	92.0 1	
% Crude Protein	11.3	12.2
% Adjusted Crude Protein	11.3	12.2
% Acid Detergent Fiber	37.3	40.6
% Neutral Detergent Fiber	64.8	70.5
% NFC	11.6	12.6
% TDN	50 I	54
NEL, Mcal/Lb	.38	. 41
NEM, Mcal/Lb	.42	.46
NEG, Mcal/Lb	.19	.21

Nutrient Requirements

% CP	% TDN	% Ca	% P
11.5	60	0.28	0.18
12.5	61	0.30	0.19
12.5	61	0.30	0.19
9.0	58	0.26	0.17
8.5	55	0.26	0.17
	% СР 11.5 12.5 12.5 9.0 8.5	% CP % TDN 11.5 60 12.5 61 12.5 61 9.0 58 8.5 555	% CP % TDN % Ca 11.5 600 0.28 12.5 611 0.30 12.5 611 0.30 9.0 58 0.26 8.5 55 0.26

Hay Feeding Scenarios

- cheap and easy___
- · easiest and least expensive
- · less consistent labor, more expensive
- frequent labor when needed, less expensive

Easiest, Least Expensive

Frequent Labor When Needed, Less Expensive

When do we supplement?

for most beef cow-calf operations protein and/or energy supplementation is generally needed

- late summer when forage quality declines
- during the winter

Ingredient	\$/50 lb	\$/ton	% TDN, _{DMB}	% СР, _{DMB}
12% cube	\$7.10	\$284	81	13.6
20% cube	\$8.60	\$344	77	22.7
38% cube	\$10.60	\$424	75	43.2

54% TDN 17% crude fiber

7% crude fiber

51% TDN 23% crude fiber

Energy and Protein Sources

- 20% cubes
- corn gluten feed
- distillers grains
- winter pasture
- whole cottonseed (max. 25% of diet)

gradually increase levels in the diet

Protein Sources

- 38 or 40% cubes
- cottonseed meal
- soybean meal
- sunflower meal
- alfalfa hay
- winter pasture

Less Consistent Labor, More Expensive

Hay: 45% TDN, 5.0% CP

Dry cow goal: maintain BCS 8 lbs of 20% cubes

Wet Cow goal: control weight loss 11 lbs of 20 % cubes Hay: 50% TDN, 6.5% CP

Dry cow goal: maintain BCS 4 lbs of 20% cubes

Wet Cow goal: control weight loss 6 lbs of 40 % cubes

Hay: 55% TDN, 9.0% CP

Dry cow

goal: maintain BCS

hay only

Wet Cow goal: control weight loss 2 lbs of 40 % cubes

Need Protein

20% CP cube (no NPN)

- \$10.30 per 50 lb sack
- 10 lb CP per sack (50 x 0.20 = 10 lb of CP)
- \$1.03/lb of CP (\$10.30 ÷ 10 = \$1.03/lb)

38 % CP cube

- \$13.55 per 50 lb sack
- 19 lb CP per sack (50 x 0.38 = 19 lb of CP)
- \$0.71/lb of CP (\$13.55 ÷ 19 = \$0.71/lb)

Need Energy

20% CP cube (high energy, 70% TDN, AFB)

- \$10.30 per sack
- 35 lb of TDN per sack (50 x 0.70 = 35 lb)
- \$0.29/lb of TDN (\$10.30 ÷ 35 = \$0.294/lb)

38% CP cube (67 % TDN, AFB)

- \$13.55 per 50 lb sack
- 33.5 lb TDN per sack (50 x 0.67 = 33.5 lb)
- \$0.40/lb of TDN (\$13.55 ÷ 33.5 = \$0.404/lb)

Supplementation Frequency

Frequency of Supplementation

energy supplements

- best to feed everyday
- if feeding small amounts, can feed every other day
- feeding at less frequent intervals can lead to big problems

feeding 3 times a week reduced ADG by 10% compared with daily feeding (Loy et al., 2008) . 3 supplements, 2 supplementation levels

Additional Considerations

- Subacute ruminal acidosis reduces sperm quality in beef bulls (Callaghan et al., 2016)
- Bulls were on free choice hay and 0.5% of BW concentrate for 125 days prior to challenge
- Challenged 1 day with rapidly fermentable CHO source
- Percent normal sperm reduced
- Percent normal sperm still lower at 88 days after challenge

http://beef.tamu.edu