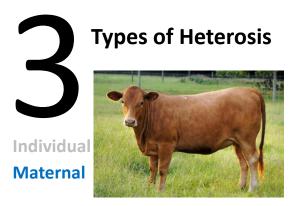
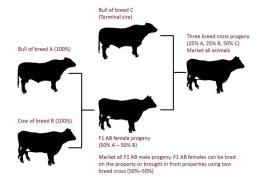


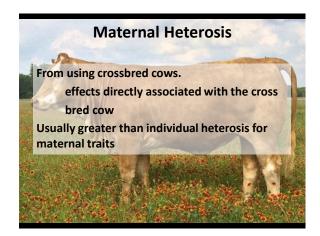

Heterosis = Hybrid Vigor




#### **Individual Heterosis**

The degree to which crossbred calves deviate from the average of calves of the parental breeds.

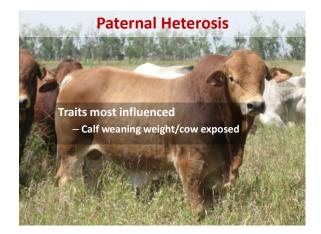




### **Heterosis Levels for Selected Traits**

| Trait                           | Individual<br>Heterosis | Maternal<br>Heterosis | Total<br>Heterosis |
|---------------------------------|-------------------------|-----------------------|--------------------|
| Cow lifetime productivity       |                         |                       | 25                 |
| Cow longevity                   |                         |                       | 38                 |
| Calving rate                    | 0                       | 6                     | 6                  |
| Calf weaning wt/exposed cow     |                         |                       | 18                 |
| Weaning rate                    | 0                       | 8                     | 8                  |
| Weaning weight                  | 5                       | 6                     | 11                 |
| Yearling weight                 | 4                       |                       | 4                  |
| % reaching puberty at 15 months | 15                      |                       | 15                 |
| Days on feed                    | -4                      |                       | -4                 |
| Carcass weight                  | 3                       |                       | 3                  |
| USDA carcass grade              | 2                       |                       | 2                  |

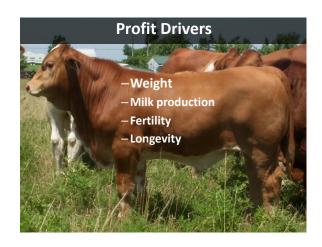


#### **Maternal Heterosis**






### Heterosis levels for selected traits


| Trait                           | Individual<br>Heterosis | Maternal<br>Heterosis | Total<br>Heterosis |
|---------------------------------|-------------------------|-----------------------|--------------------|
| Cow lifetime productivity       |                         |                       | 25                 |
| Cow longevity                   |                         |                       | 38                 |
| Calving rate                    | 0                       | 6                     | 6                  |
| Calf weaning wt/exposed cow     |                         |                       | 18                 |
| Weaning rate                    | 0                       | 8                     | 8                  |
| Weaning weight                  | 5                       | 6                     | 11                 |
| Yearling weight                 | 4                       |                       | 4                  |
| % reaching puberty at 15 months | 15                      |                       | 15                 |
| Days on feed                    | -4                      |                       | -4                 |
| Carcass weight                  | 3                       |                       | 3                  |
| USDA carcass grade              | 2                       |                       | 2                  |

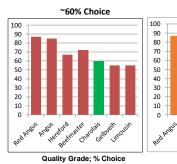





### Heterosis levels for selected traits

| Trait                           | Individual<br>Heterosis | Maternal<br>Heterosis | Total<br>Heterosis |
|---------------------------------|-------------------------|-----------------------|--------------------|
| Cow lifetime productivity       |                         |                       | 25                 |
| Cow longevity                   |                         |                       | 38                 |
| Calving rate                    | 0                       | 6                     | 6                  |
| Calf weaning wt/exposed cow     |                         |                       | 18                 |
| Weaning rate                    | 0                       | 8                     | 8                  |
| Weaning weight                  | 5                       | 6                     | 11                 |
| Yearling weight                 | 4                       |                       | 4                  |
| % reaching puberty at 15 months | 15                      |                       | 15                 |
| Days on feed                    | -4                      |                       | -4                 |
| Carcass weight                  | 3                       |                       | 3                  |
| USDA carcass grade              | 2                       |                       | 2                  |






# Heritability (h<sup>2</sup>)and Total heterosis by trait class

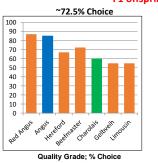
| Trait                                | Heritability       | Total Heterosis    |  |  |
|--------------------------------------|--------------------|--------------------|--|--|
| Carcass                              | High (0.4 - 0.6)   | Low (0 – 5%)       |  |  |
| Growth                               | Medium (0.2 – 0.4) | Moderate (5 – 10%) |  |  |
| Reproduction                         | Low (< 0.2)        | High (10 – 30%)    |  |  |
| Few traits have h <sup>2</sup> > 0.6 |                    |                    |  |  |

**Heritability Estimates** Height 0.85 REA 0.70 Tenderness 0.60 Birth weight 0.45 Feedlot gain 0.34 Weaning weight 0.24 Fertility 0.10 **Calving interval** 0.08 **Conception rate** 0.07

### **Breed Complementarity**



Cundiff et al., 2004



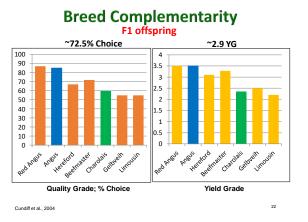

Quality Grade; % Choice

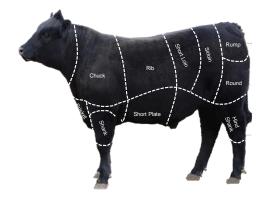
19

~85% Choice

## Breed Complementarity F1 offspring




Cundiff et al., 2004


### **Breed Complementarity**



Cundiff et al., 2004

20





### **Lost Opportunities**

| Quality Grade         |          | -\$25.25 |
|-----------------------|----------|----------|
| Yield Grade           | -\$37.77 | -\$5.77  |
| <b>Carcass Weight</b> |          | -\$6.75  |
| Offal                 |          | -\$5.15  |
| Hide/Branding         |          | -\$0.74  |
| Total                 |          | -\$43.66 |

NBQA 2011

#### **USDA Quality and Yield Grade Distribution**

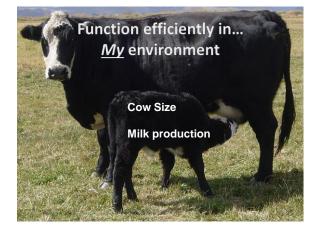
| USDA<br>Yield<br>Grade | Prime, % | Choice, % | Select, % | Other, % |
|------------------------|----------|-----------|-----------|----------|
| 1                      | 0.0      | 3.6       | 7.3       | 1.4      |
| 2                      | 0.4      | 22.8      | 15.3      | 2.4      |
| 3                      | 1.8      | 25.9      | 8.0       | 1.5      |
| 4                      | 0.5      | 6.3       | 1.4       | 0.4      |
| 5                      | 0.1      | 1.3       | 0.1       | 0.1      |

NBQA 2011

### Table 1. Example Grid, as Presented by a Packer (\$/dressed cwt.)

| Choice YG3 550-950 lbs.      | Base Price |
|------------------------------|------------|
| Prime-Choice Price Spread    | +6.00      |
| Choice-Select Price Spread   | -6.00      |
| Select-Standard Price Spread | -10.00     |
| Yield Grade 1                | +5.00      |
| Yield Grade 2                | +3.00      |
| Yield Grade 4                | -20.00     |
| Yield Grade 5                | -25.00     |
| Dark Cutters                 | -20.00     |
| Light Carcasses (<550 lbs.)  | -10.00     |
| Heavy Carcasses (>950 lbs.)  | -20.00     |

#### USDA Quality and Yield Grade Distribution


| USDA Yield<br>Grade | Prime, % | Choice, % | Select, % |
|---------------------|----------|-----------|-----------|
| 1                   | \$11     | \$5       | -\$1      |
| 2                   | \$9      | \$3       | -\$3      |
| 3                   | \$6      | \$0       | -\$6      |
| 4                   | -\$14    | -\$20     | -\$26     |
| 5                   | -\$19    | -\$25     | -\$31     |

Dark Cutter =-\$20; Light Carcass (<550 lbs) = -\$10; Heavy Carcass (>1000 lbs) = -\$20

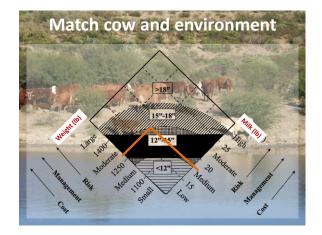
### Match cow to Environment







#### 1300# Cow Calving to Breeding to Weaning to Last Breeding Weaning Last 1/3 Trimester Dry Matter, lbs 29.1 28.5 24.2 22.7 25.8 12% 个 DMI CP, lbs 2.75 3.06 2.18 2.5 1.41 1.6 1.93 2.03 TDN/Energy, lbs 15.5 17.3 14.3 15.7 10.1 11.4 11.9 13.57


**Nutrient Requirements** 



| Average Milk vs Superior Milk |                           |                           |                           |                   |
|-------------------------------|---------------------------|---------------------------|---------------------------|-------------------|
|                               |                           | 100# Cow                  |                           |                   |
|                               | Calving<br>to<br>Breeding | Breeding<br>to<br>Weaning | Weaning<br>to<br>Last 1/3 | Last<br>Trimester |
| Dry Matter, lbs               | 26.4 29.2                 | 25.5 27.25                | 21.4                      | 22.7              |
| CP, lbs                       | 2.75 3.66                 | 2.18 2.82                 | 1.41                      | 1.93              |
| TDN/Energy, lbs               | 15.5 18.7                 | 14.3 16.70                | 10.1                      | 11.9              |

Lationat Dec

| Nutrient Requirements<br>1100# Cow<br>Average Milk vs Superior Milk                                             |           |               |           |      |
|-----------------------------------------------------------------------------------------------------------------|-----------|---------------|-----------|------|
| Calving<br>toBreeding<br>toWeaning<br>toLastBreedingWeaning<br>WeaningLast 1/3Trimester(80 d)(160 d)(30 d)(95d) |           |               | Trimester |      |
| Dry Matter, lbs                                                                                                 | 26.4 29.2 | 25.5 27.25    | 21.4      | 22.7 |
| Total DMI; + lbs                                                                                                | 224       | 280<br>04 lbs | 1.41      | 1.93 |
| 8% more grazing pressure during the growing season                                                              |           |               |           |      |





### **Capturing Heterosis**

| Generation | Breed A<br>Fraction | Breed B<br>Fraction | individual<br>Heterosis |
|------------|---------------------|---------------------|-------------------------|
| 1          | 1/2                 | 1/2                 | 100 %                   |
| 2          | 3/4                 | 1/4                 | <b>50</b> %             |
| 3          | 7/8                 | 1/8                 | <b>25</b> %             |
| 4          | 15/16               | 1/16                | 12.5 %                  |
| 5          | 31/32               | 1/32                | <b>6.25</b> %           |

Match bull to the market









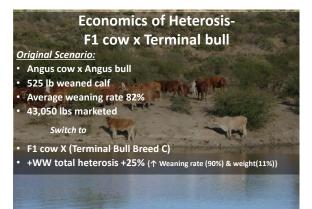




### Economics of Heterosis

- What does it cost?
- It depends.
- Cow size
  - About 6 % increase/100 lbs BW
- Milk production
- ~1.5 % increase in energy/lb of milk
- ~2.7 % increase in CP/lb of milk
- Make sure she fits your environment
   Stocking rate
  - Supplemental feed

#### **Economics of Heterosis-**


#### Angus cow x Terminal bull

Original Scenario:

- 100 cows; Angus cow x Angus Bull
- 525 lb weaning weight
- Average weaning rate 82%
  - 43,050 lbs marketed

#### Switch to

- Angus cow x Bull Breed B
- Individual heterosis (+5%) - 551 lb weaning weight F1 calf
- 45,203 lbs marketed
- +2152 lbs/year \* \$1.67 = +\$3,594/year



#### **Capturing Heterosis**

| System                         | % Max<br>Heterosis | % Increase in Calf<br>Wt./Cow Exposed |
|--------------------------------|--------------------|---------------------------------------|
| Pure breeds                    | 0                  | 0                                     |
| 2 breed rotation               | 67                 | 16                                    |
| 3 breed rotation               | 86                 | 20                                    |
| 2 breed composite              | 50                 | 12                                    |
| 3 breed composite              | 63                 | 15                                    |
| Term. Sire/purch. F1<br>female | 100                | 23-28                                 |

Brett Barham, Univ. of Arkansas

#### Economics of Heterosis-F1 cow x Terminal bull Original Scenario: • Angus cow x Angus bull • 525 lb weaned calf • Average weaning rate 82% • 43,050 lbs marketed <u>Switch to</u> • F1 cow X (Terminal Bull Breed C) • +WW total heterosis +25% (↑ Weaning rate (90%) & weight(11%)) • 656 lb calf >+131 lbs • 59,040 lbs

+15,990 lbs \* \$1.48 = +\$23,665

#### **Economics of Heterosis**

- +\$3,594 increased weaning weight (Bull Affect)
  - Angus cow x terminal bull
- (½ Angus Calf x ½ Terminal bull breed calf)
- +\$23,665 increase in weaning rate & weight
  - F1 cow x terminal bull breed

ed average weights on 10-24-14 LISDA-AMS d

- (½ F1 x Terminal bull breed calf)

### Parting Thoughts

- Must be able to manage for the benefits
- Heterosis will not make up for poor animal husbandry/management
- Heterosis will not make up for poor bull selection

### **Parting Thoughts**

- Heterosis works – Makes you money
- Match cows to their environment
- Match bulls to your market
- Educate yourself to benefits of crossbreeding



Robert S. Wells, Ph.D., PAS 580-224-6434 rswells@noble.org



**Integrity Beef Program** 

Robert Wells, Ph.D.



#### **OVERVIEW**

Consultation basics for cattle production
 <u>Best Management Practices</u>



- Designed to simplify cow/calf producer management decisions
  Uniform protocols for animal health and production, pasture and
- range management, and record keeping
- Value-added principle
  - Increase marketability of calvesImprove pasture and range quality
  - Utilize records to identify strengths and weaknesses of operation



#### 51.14 51.14 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51

Preconditi Cost of G

ALReal

\$1.40



- Develop production and marketing processes to:
- Implement industry BMPs for cattle, pastures, and financials
   Wean and sell a healthier, heavier calf
- Improve production and marketing efficiencies
- Increase product quality and uniformity
- Provide sustainable production





Average Daily G

2.33

0.85

\$1.50

\$0.50

\$1,174.09

\$1,021.31

\$836.02

- I Beet Max

+I-Beef Avg

- LBeef Max

Preconditioning Value of Gain

\$1.54



#### Top 20% of the breed for weaning and yearling EPDs



Total Preconditio

\$173.20

\$121.10

\$57.82

540









### OBJECTIVES

- Develop production and marketing processes to:
- Implement industry BMPs for cattle, pastures, and financ
- Weah and sell a heathlet, heavier call
   Improve production and marketing efficiencies
- Provide sustainable production
- Collectively though the Integrity Beef Alliance
   Wean and sell a healthier, heavier calf
- Create a large set of uniform "feedlot-ready" cattle
- Increase marketing opportunities
- Increased profitability



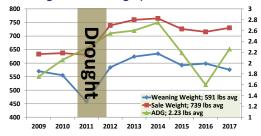
#### **INCREASED WEANING WEIGHT**

529 Ibs. National average USDA National Animal Health Monitoring System

2009 2010 2011

592 lbs. Integrity Beef cattle

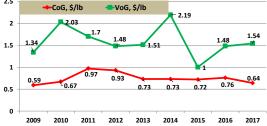
le Increase over national average


· Not uncommon to hear feedback of +75 lbs increase

• Over 5 years 25 hd herd = 7,875 lbs increase



2015 2016 2017


Weaning and Sale Weight, ADG



Weaning and Sale Weight, ADG

2012 2013 2014

Preconditioning Value vs. Cost of Gain











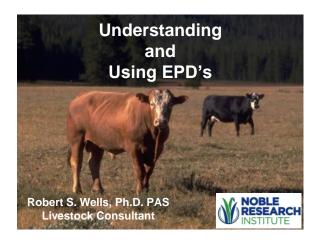


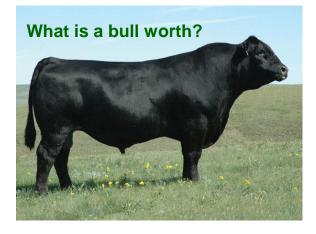






www.integritybeef.org https://www.facebook.com/IntegrityBeef/


> Robert Wells, Ph.D. rswells@noble.org 580-224-6432 www.integritybeef.org






Robert S. Wells, Ph.D., PAS 580-224-6434 rswells@noble.org





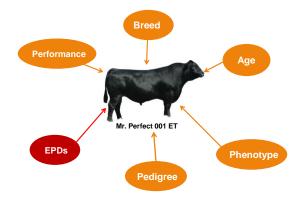











### It Depends...

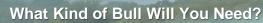
- How Good is he really?
  - How much information do you have and how accurate is it?
- How will you market his calves?
- How good are the cows?

## How much genetic progress can be made?














Know Your Cow Herd



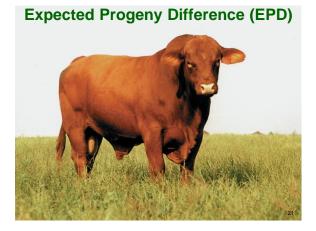




One to Compliment the Cow Herd!








And How You are Going to Get There!

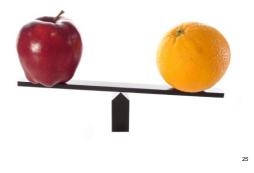
















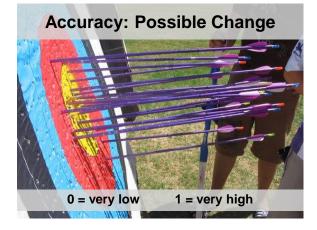

An Estimate of how future progeny of each sire are expected to perform relative to the progeny of other sires listed in the database.

#### **EPD's are Breed Specific**



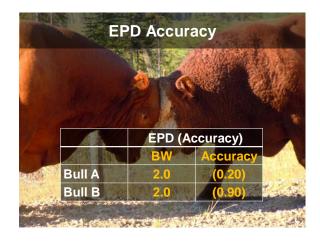


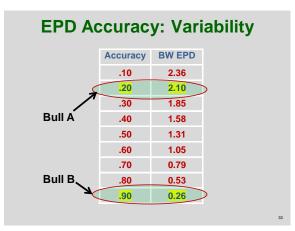
#### **Contemporary Group**


A set of animals that have had an equal opportunity to perform: same sex, managed alike, and exposed to the same environmental conditions and feed resources in the same location.



### **Contemporary Group**


It must contain Reference Sires and have a minimum number of progeny to be valid.

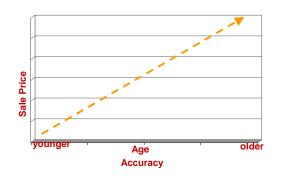







| EPI                                         | O Accuracy: | Variability |
|---------------------------------------------|-------------|-------------|
|                                             | Accuracy    | BW EPD      |
| s s                                         | .10         | 2.55        |
| ase                                         | .20         | 2.45        |
| rea<br>Sre                                  | .30         | 2.35        |
|                                             | .40         | 2.20        |
| Accuracy Increases<br>Variability Decreases | .50         | 2.00        |
| ilit<br>a                                   | .60         | 1.80        |
| iab                                         | .70         | 1.60        |
| Ac<br>/ar                                   | .80         | 1.40        |
| -                                           | .90         | 1.20        |
|                                             | 7           |             |






### Take Home Message

|        | BW EPD<br>(Acc.) | Acc.<br>Change | BW EPD<br>Range |
|--------|------------------|----------------|-----------------|
| Bull A | 2.0 (.20)        | ± 2.1          | +4.10 to + 0.10 |
| Bull B | 2.0 (.90)        | ± 0.26         | +2.26 to + 1.74 |



### Age/Accuracy vs. Your Back Pocket





| 2018 Across Breed EPD Table<br>(Selected Breeds) |               |                 |                |                |       |       | le     |            |
|--------------------------------------------------|---------------|-----------------|----------------|----------------|-------|-------|--------|------------|
| Breed                                            | BW            | ww              | YW             | мм             | Marb  | REA   | Fat    | Carc<br>wt |
| Angus                                            | 0.0           | 0.0             | 0.0            | 0.0            | 0.0   | 0.0   | 0.0    | 0.0        |
| Charolais                                        | 6.9           | 32.5            | 23.2           | 5.5            | -0.26 | 1.21  | -0.204 | 8.1        |
| Simmental                                        | 2.9           | -8.9            | -14.9          | 3.8            | -0.21 | 1.03  | -0.179 | -2.9       |
| Hereford                                         | 1.6           | -18.2           | -42.1          | -14.1          | -0.29 | -0.06 | -0.075 | -72.4      |
| Limousin                                         | 1.7           | -21.5           | -46.9          | -7.4           | -0.22 | 1.13  | -0.101 | -21.6      |
| Gelbvieh                                         | 2.8           | -22.3           | -32.1          | 6.5            | -0.2  | 0.86  | -0.103 | -20.2      |
| Red Angus                                        | 2.3           | -28.3           | -35.4          | 5.5            | -0.13 | 0.06  | -0.017 | -16.6      |
| http://nwdistrict.#as.u                          | fl.edu/phag/2 | 018/01/12/marc- | updates-across | -breed-epd-tat | vle/  |       |        | 37         |

### **Compare Hereford vs. Charolais**

**Hereford Bull** 



**Charolais Bull** 



| Jompa            | re Hereto                          |               | s. Charolais    |
|------------------|------------------------------------|---------------|-----------------|
| 50% fo           | r Breed for BW ar                  | nd 20%        | for WW and YW   |
|                  |                                    | BW            |                 |
| Hereford Bull    | EPD (Registration Papers)          | 3.1           |                 |
|                  | Across Breed<br>Adjustment (table) | 1.6           |                 |
|                  | Adjusted EPD                       | 4.7           |                 |
|                  |                                    | BW            |                 |
| Charolais Bull   | EPD (Registration Papers)          | .4            |                 |
|                  | Across Breed<br>Adjustment (table) | 6.9           |                 |
|                  | Adjusted EPD                       | 7.3           |                 |
|                  |                                    | BW            |                 |
| Charolais Differ | ence                               | 2.6           |                 |
| Wh               | en mating bulls to cows            | of a third, ( | unrelated breed |

CL

### **Compare Hereford vs. Charolais**

| 007010           | r Breed for Bw ai                  | IU 20 /0 I |       |
|------------------|------------------------------------|------------|-------|
|                  |                                    | BW         | ww    |
| Hereford Bull    | EPD (Registration Papers)          | 3.1        | 58    |
|                  | Across Breed<br>Adjustment (table) | 1.6        | -18.2 |
|                  | Adjusted EPD                       | 4.7        | 39.8  |
|                  |                                    |            |       |
|                  |                                    | BW         | ww    |
| Charolais Bull   | EPD (Registration Papers)          | .4         | 36.1  |
|                  | Across Breed<br>Adjustment (table) | 6.9        | 32.5  |
|                  | Adjusted EPD                       | 7.3        | 68.6  |
|                  |                                    | BW         | ww    |
|                  |                                    | 2.6        | 28.8  |
| Charolais Differ |                                    |            |       |

### **Compare Hereford vs. Charolais**

50% for Breed for BW and 20% for WW and YW

| 50 % 101         | г Бтеец тог Бүү аг                 | 10 20% 1      | or www.a      |       |
|------------------|------------------------------------|---------------|---------------|-------|
|                  |                                    | BW            | ww            | YW    |
| Hereford Bull    | EPD (Registration Papers)          | 3.1           | 58            | 93    |
|                  | Across Breed<br>Adjustment (table) | 1.6           | -18.2         | -42.1 |
|                  | Adjusted EPD                       | 4.7           | 39.8          | 50.9  |
|                  |                                    | BW            | ww            | YW    |
| Charolais Bull   | EPD (Registration Papers)          | .4            | 36.1          | 65.7  |
|                  | Across Breed<br>Adjustment (table) | 6.9           | 32.5          | 23.2  |
|                  | Adjusted EPD                       | 7.3           | 68.6          | 88.9  |
|                  |                                    | BW            | ww            | YW    |
| Charolais Differ | ence                               | 2.6           | 28.8          | 38.0  |
| Wh               | en mating bulls to cows            | of a third, u | inrelated bre | ed    |

### **Comparing Angus vs. Charolais**



Angus Bull

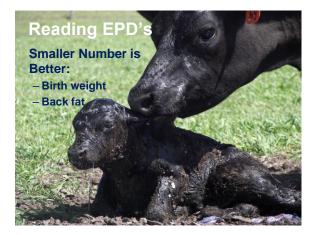
Charolais Bull

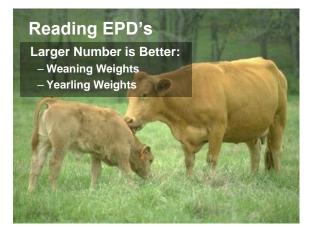


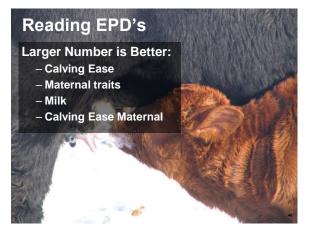
50% for Breed for BW and 20% for WW and YW

|                  |                                                 | BW  | ww    | YW    |
|------------------|-------------------------------------------------|-----|-------|-------|
| Angus Bull       | EPD (Registration Papers)                       | 1.4 | 62    | 108   |
|                  | Across Breed<br>Adjustment (table)              | 0.0 | 0     | 0     |
|                  | Adjusted EPD                                    | 1.4 | 62    | 108   |
|                  |                                                 | BW  | ww    | YW    |
| Hereford Bull    | EPD (Registration Papers)                       | 3.1 | 58    | 93    |
|                  | Across Breed<br>Adjustment (table)              | 1.6 | -18.2 | -42.1 |
|                  | Adjusted EPD                                    | 4.7 | 39.8  | 50.9  |
|                  |                                                 | BW  | ww    | YW    |
| Hereford Differe | ence                                            | 3.3 | -22.2 | -57.1 |
| Whe              | Hybrid Vigor will inc<br>n mating bulls to cows |     |       | preed |

### **Comparing Angus vs. Charolais**


50% for Breed for BW and 20% for WW and YW


|                  |                                                 | BW  | ww   | YW    |
|------------------|-------------------------------------------------|-----|------|-------|
| Angus Bull       | EPD (Registration Papers)                       | 1.4 | 62   | 108   |
|                  | Across Breed<br>Adjustment (table)              | 0.0 | 0    | 0     |
|                  | Adjusted EPD                                    | 1.4 | 62   | 108   |
|                  |                                                 | BW  | ww   | YW    |
| Charolais Bull   | EPD (Registration Papers)                       | .4  | 36.1 | 65.7  |
|                  | Across Breed<br>Adjustment (table)              | 6.9 | 32.5 | 23.2  |
|                  | Adjusted EPD                                    | 7.3 | 68.6 | 88.9  |
|                  |                                                 | BW  | ww   | YW    |
| Charolais Differ | ence                                            | 5.9 | 6.6  | -19.1 |
| Whe              | Hybrid Vigor will inc<br>n mating bulls to cows |     |      | preed |


#### Comparison of several breeds using Across Breed EPD Adjustments

50% for Breed for BW and 20% for WW and YW

| Breed                     | BW   | ww    | YW    | Marb  | REA   | FAT    | Carc<br>Wt. |
|---------------------------|------|-------|-------|-------|-------|--------|-------------|
| Hereford vs Angus         | 3.3  | -22.2 | -57.1 | -0.87 | -0.28 | -0.078 | -50.4       |
| Charolais vs Angus        | 5.9  | 6.6   | -19.1 | -0.85 | 1.29  | -0.197 | -16.5       |
| Charolais vs<br>Hereford  | 2.6  | 28.8  | 38    | 0.02  | 1.57  | -0.119 | 33.9        |
| Red Angus vs<br>Angus     | -1.1 | -24.3 | -38.4 | -0.33 | -0.44 | -0.025 | -34.6       |
| Red Angus vs<br>Charolais | -7   | -30.9 | -19.3 | 0.52  | -1.73 | 0.172  | -18.1       |
| Red Angus vs<br>Hereford  | -4.4 | -2.1  | 18.7  | 0.54  | -0.16 | 0.053  | 15.8        |
|                           |      |       |       |       |       |        |             |







### **Reading EPD's**

Larger Number is Better:

- Carcass weight
- Rib Eye Area
- Marbling



\$W, \$F,

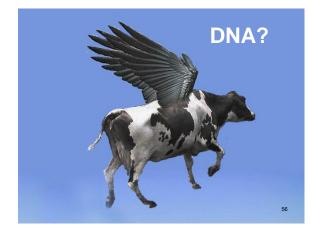


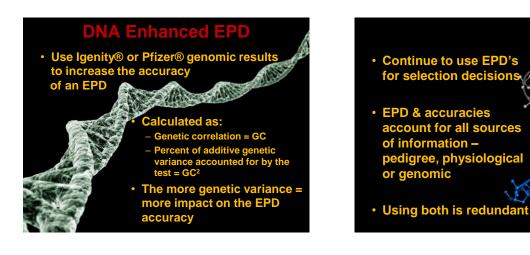
### Which EPD's should I use????

• IT DEPENDS.....

Retained

- When do you market your cattle?
- Do you retain heifers as replacements?
- Do you have an interest in retaining ownership?
- The good of the industry?
- How much can you afford to spend?






Retained







#### **Summary**

- · Use EPD's as a tool and in conjunction with other information
- · Familiarize yourself with terms that are breed specific
- · Extremes may not be the answer

--Sally Northcutt, AAA/AGI

Genomic results are a way to enhance current

selection tools to achieve

traits where it's difficult to

measure phenotype.

more accuracy on predictions for younger animals, and to characterize genetics for

#### Summary

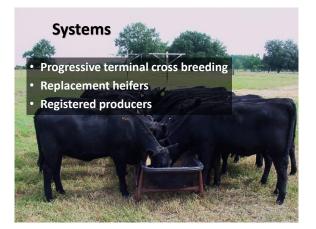
- EPDs are not static, keep up to date
- Use accuracies accordingly
- Don't forget about visual appraisal, disposition, etc.
- Too much of one thing can be hazardous

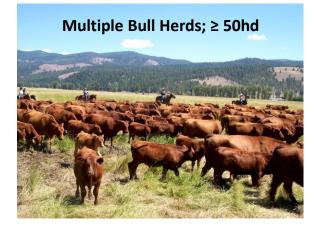
Quality is NEVER an accident but a result of intelligent and endless efforts...





Robert S. Wells, Ph.D., PAS 580-224-6434 rswells@noble.org

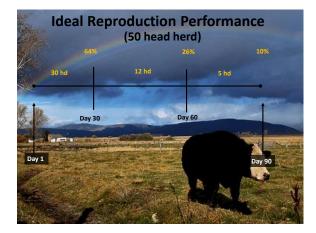

## Comparison of owning a bull vs. AI for producers of various sizes




#### Why AI?

- More early calves
- Uniform calf crop
  Higher quality genetics than you could afford to buy in the bull.
- Reduce time for genetic progression
- Can select for calving ease
- Strategically plan matings
- Increased marketability of calves
- Sexed semen










| Not So Ideal Rep<br>(5 | oroduction Per         | formance |
|------------------------|------------------------|----------|
| 40%                    | <b>1</b><br><b>35%</b> | 25%      |
| 19 hd<br>Day 30-       | 16 hd<br>Day 60        | 12 hd    |
| Day 1                  | -                      | Day 90   |
|                        |                        | N/P      |

|           | No.<br>Head | Days to<br>Weaning | ADG       | Total<br>LBS. | Calf<br>wt, lbs |
|-----------|-------------|--------------------|-----------|---------------|-----------------|
| Day 1-30  | 19          | 209                | 2.1       | 9,859         | 519             |
| Day 31-60 | 16          | 179                | 2.1       | 7,294         | 456             |
| Day 60-90 | 12          | 149                | 2.1       | 4,715         | 393             |
|           | Total lbs   |                    |           | 21,868        | 456             |
|           | Total \$    | @                  | \$1.38/lb | \$30,260      |                 |



|           | No.<br>Head | Days to<br>Weaning | ADG       | Total<br>LBS. | Calf<br>wt, lbs |
|-----------|-------------|--------------------|-----------|---------------|-----------------|
| Day 1-21  | 30          | 209                | 2.1       | 15,567        | 519             |
| Day 31-60 | 12          | 179                | 2.1       | 5,471         | 456             |
| Day 61-90 | 5           | 149                | 2.1       | 1,965         | 393             |
|           | Total lbs   |                    |           | 23,002        | 490             |
|           | Total \$    |                    | \$1.37/lb | \$31,829      |                 |
|           | Diff        | erence             |           | \$1,202       |                 |

#### A.I. will Increase in Calf Quality (weaning weight)

- Assume same breeding seasons as before but increased potential for weaning weight.
- Using a high quality terminal cross bull to maximize weaning weight, add 105 lbs (+.5 lb ADG) to AI sired calves.
- Increases total revenue by another \$2,707

  Better Genetics + ideal calving distribution: st = 580 lbs; hfr = 560 lbs; Not ideal calving distribution: st = 533 lbs; hfr = 515 lbs;

|                 | No.<br>Head | Days to<br>Weaning | ADG       | Total<br>LBS. | Calf<br>wt,<br>lbs |
|-----------------|-------------|--------------------|-----------|---------------|--------------------|
| Day 1-30 (AI)   | 26          | 209                | 2.6       | 16,208        | 623                |
| Day 1-30 (bull) | 9           | 209                | 2.1       | 4,670         | 518                |
| Day 31-60       | 11          | 179                | 2.1       | 5,015         | 456                |
| Day 60-90       | 1           | 149                | 2.1       | 393           | 393                |
|                 | Total lbs   |                    |           | 26,286        |                    |
|                 | Total \$    | @                  | \$1.30/lb | \$34,170      |                    |
|                 | Difference  | \$34,170-\$3       | 30,260 =  | \$3,910       |                    |

**Weaning Projections** 

(Ideal Scenario)

#### Increased weights by shifting to more earlier born calves = \$1,202

- Increase in weights by better genetics = \$2,707
- Only need one bull rather than 2 = \$3500

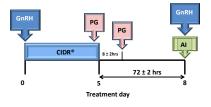
   Depreciated over the life of the bull = \$700/yr
   Maintenance cost on the one bull not needed = \$500
- Annual Gross Profit of A.I. = \$5,109

| Costs of Timed AI |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | Unit Cost     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| CIDR              | \$ 10.25      | ATTACK ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| GnRH + PG         | \$ 8.00       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Semen             | \$20.00       | A Manual Control of Control |  |
| Technician        | \$10.00       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| AI Cost/Cow       | \$48.25*      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| *Does not includ  | e labor costs |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

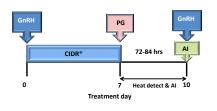
#### • Annual Gross Profit of A.I. = \$5,109

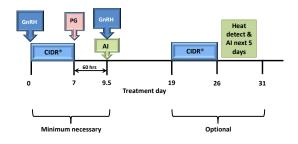
• Cost of A.I. of 50 hd = \$2,413 (\$48.25\*50)

Annual net profit of A.I. = \$2,697 per 50 hd of calves







#### **Replacement Heifers**


- Use sexed semen from maternal bulls to produce replacement heifers.
  - Will be older calves of the calving season
     Bred to the 'right bull' and the 'right cow'
- Use sexed semen from low BW bulls to breed to
- heifers.
- Get bull calves from the heifers worth more at marketing
- Potentially add \$100-150 more to the value of the cow

#### 5-day CO-Synch + CIDR<sup>®</sup>



#### Select Synch+CIDR<sup>®</sup> (Heat Detect & Timed AI )









Robert S. Wells, Ph.D., PAS 580-224-6434 rswells@noble.org

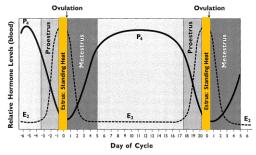



Figure 7-2. Stages of the estrous cycle. Proestrus is characterized by a significant rise in estradiol (E<sub>2</sub>). When estradiol reaches a certain level, the female enters estrus. Following ovulation, cells of the follicle are transformed into a corpus luteum during metestrus. Diestrus is characterized by a fully functional CL and high progesterone (P<sub>2</sub>).

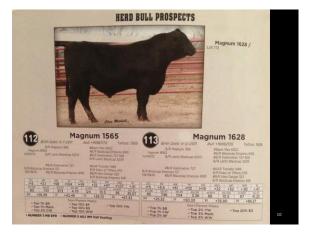




The <u>cow</u> should <u>fit</u> her <u>environment</u>




















## Suggested EPD's

- Birth —Top 50%
- Carcass:
  - -**Top 50%**
  - -Rib Eye Area
  - -Marbling



## Suggested EPD's

- Birth
  - -**Top 50%**
- Carcass:

Data So

Livestock Marketing Info

ce: USDA-AMS. Compiled and Fo

by LMI

- -Top 50%
  - Rib Eye Area
  - Marbling



C-P-06 02/12/16



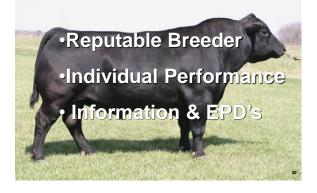


**Southern Plains** 275 -500-600lb Steer Calves -700-800lb Feeder Steers - Fed Steers 250 225 550 lbs \$910 \$ Per CWT 200 750 lbs \$1095 175 \$1448 150 125 100 75 50 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

**Average Annual Cattle Prices** 



| Purchase price         | \$2500      |
|------------------------|-------------|
| Salvage weight of Bull | 1850 lbs    |
| Salvage price of bull  | \$0.80 / lb |
| Salvage value of bull  | \$1465.20   |
| Cost of bull, yr       | \$ 206.96   |


## **Bull # 1**

| Cost of bull (5 yr life span in herd) | \$206.96       |
|---------------------------------------|----------------|
| Cash maintenance cost, /yr            | \$400.00       |
| Total cash cost of bull, /yr          | \$606.96       |
| Cows/yr bred                          | 25             |
| Cash cost, /cow/yr                    | \$ 24.28       |
|                                       | and the second |

**Integrity Beef Bull # 2** 



## **Integrity Beef Bull, #2**



### Integrity Beef Bull, # 2



## Integrity Beef Bull, # 2



### Yearly Per Cow Bull Cash Costs

|                                        | Bull # 1 | Bull #2   |
|----------------------------------------|----------|-----------|
| Bull<br>Purchase<br>Price              | \$2500   | \$4500    |
| Total Annual<br>Bull Cash<br>Costs/cow | \$24.28  | \$43.33   |
| Bull #1/Cow<br>Advantage               | xx       | (\$19.05) |

#### **Increased Value at Weaning**

|                                                  | Bull #1<br>520 lbs @<br>Weaning | Bull #2<br>585 lbs @<br>weaning |
|--------------------------------------------------|---------------------------------|---------------------------------|
| Selling price, \$/lb                             | \$ 1.4374                       | \$ 1.3634                       |
| Value of calf                                    | \$ 754.64                       | \$ 818.04                       |
| Bull #1/Cow Advantage                            | XX                              | (\$19.05)                       |
| Adjusted Calf Value                              | \$ 754.64                       | \$ 798.99                       |
| Difference                                       | XX                              | \$ 44.35                        |
| Increased Revenue<br>\$/25 cows/yr               | хх                              | \$1,108.75                      |
| Net increase revenue<br>\$/bull (5 yr) (4200.25) | хх                              | \$5,544.43                      |

#### **Increased Value after Backgrounding**

|                                        | Bull #1<br>655 lbs @<br>Backgrounding | Bull #2<br>779 lbs @<br>Backgrounding |
|----------------------------------------|---------------------------------------|---------------------------------------|
| Selling price, \$/lb                   | \$ 1.2536                             | \$ 1.2036                             |
| Value of calf                          | \$ 821.11                             | \$ 937.30                             |
| Bull #1/Cow Advantage                  | XX                                    | (\$ 19.05)                            |
| Adjusted Calf Value                    | \$ 821.11                             | \$ 918.25                             |
| Difference                             | XX                                    | \$ 97.14                              |
| Increased Revenue \$/25<br>cows/yr     | хх                                    | \$2,428.50                            |
| Net increase revenue<br>\$/bull (5 yr) | хх                                    | \$12,143.24                           |

Now add the price you were willing to pay for the Neighbor's bull (\$2,500) to the increased revenue the better bull provides (\$5,544.43) = <u>\$8,044.43</u>

Bull Breakeven price at weaning.



Now add the price you were willing to pay for the Neighbor's bull (\$2,500) to the increased revenue the better bull provides (\$12,143.24) = \$14,643.24Bull Breakeven price after a preconditioning program.





#### **Additional Value Considerations**





Robert S. Wells, Ph.D., PAS 580-224-6434 rswells@noble.org