

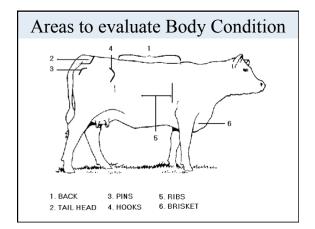
Supplementation Basics for Cow-Calf Operations

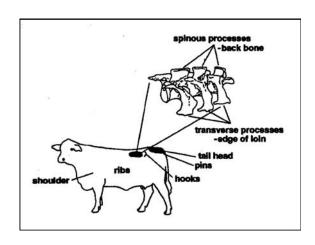
Jason Banta, Ph.D., PAS
Associate Professor and Extension Beef Cattle Specialist
Texas A&M AgriLife Extension Service
Texas A&M University
Overton, TX

Hay Feeding Scenarios

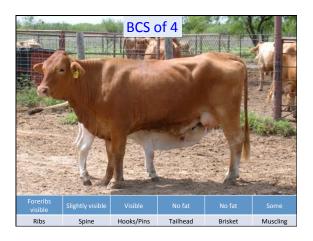
· cheap and easy

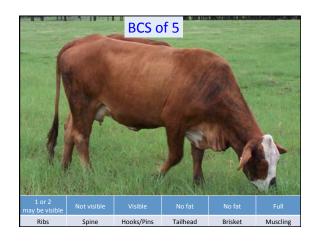
- · easiest and least expensive
- · frequent labor when needed, less expensive
- · less consistent labor, more expensive

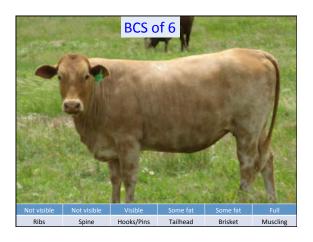

What 3 primary things affect supplementation of energy & protein?

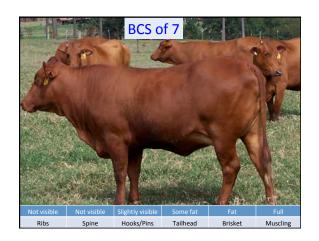

BCS forage & hay quality nutrient requirements

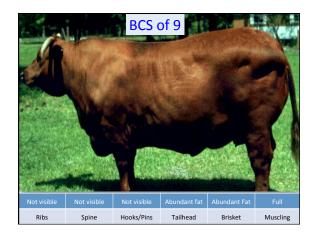
Performance Terminology

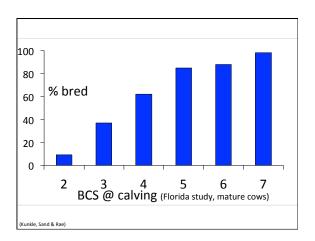

Growing Cattle: ADG Cows: BCS











Forage Quality and Forage Intake

as forage quality declines forage intake decreases

- low quality forage = low intake
- high quality forage = higher intake

Factors Affecting Forage Quality

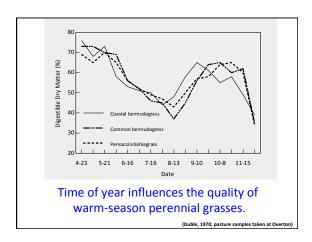
- maturity
- species
- temperature
- · rained on hay

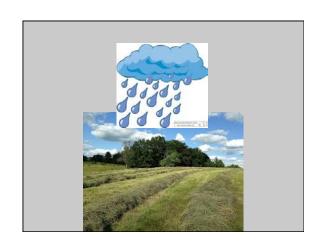
Maturity			
Interval between cuttings	% TDN	Yield, tons/acre	
3 weeks	65.2	7.9	
4 weeks	61.9	8.4	
5 weeks	59.3	9.2	
6 weeks	58.0	10.3	
8 weeks	54.1	10.2	
12 weeks	51.0	10.4	
		_	

- · Coastal bermudagrass study in Georgia
- Glen Burton

Species

hyrbid bermudagrass versus:


- Tifton 85
- bahiagrass
- crabgrass
- johnsongrass
- native range
- winter annuals (i.e. ryegrass, rye, oats, etc.)


Species

cool season > warm season

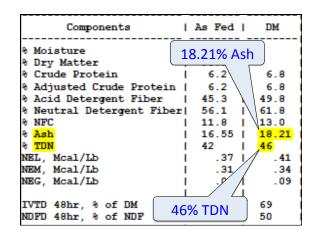
annuals > perennials

- winter annuals (i.e. ryegrass, rye, oats, etc.)
- Tifton 85
- crabgrass
- _ johnsongrass
- bahiagrass
- bermudagrass

Determining Forage Quality

sample each cutting

TDN (i.e. energy)


- · summative equations
- · NDF, ash, CP
- · NDF digestibility
- · cattle, horses, etc.

Crude Protein

approx. cost \$50

Components	ì	As Fed	DM
% Moisture	ī	9.1	
% Dry Matter	ı	90.9	
% Crude Protein	ı	6.2	6.8
% Adjusted Crude Protein	ı	6.2	6.8
% Acid Detergent Fiber	i	45.3 I	49.8
Neutral Detergent Fiber	e١	56.1	61.8
% NFC	ı	22.3	24.5
8 TDN	ı	52	57
NEL, Mcal/Lb	ı	.46 1/	. 51
NEM, Mcal/Lb	ı	.46//	. 51
NEG, Mcal/Lb	I	- / /I	.26
	ı	/	
IVTD 48hr, % of DM	70	/ TDN	69
NDFD 48hr, % of NDF 5/	7	6 TDN	50

Forage Testing Laboratories

Dairy One Forage Lab Ithaca, NY; 800-344-2697 http://www.dairyone.com

- > wet chemistry will always work
- NIR can be used if lab has forage specific database

Determining Forage Quality Pasture: forage species growing conditions fecal consistency

Nutrient Requirements

Cow Stage of Production*	CP, % of DM	TDN, % of DM
2-yr-old lactating cow**	11	62
3-yr-old lactating cow**	11.5	63
mature lactating cow**	11.5	63

*Estimated offearly requirements to uniform inflament ow booty conduction to adminish influence crows under typical production conditions (Beef Cattle NRC, 1996). These requirements will vary depending on numerous factors including animal weight, body condition, breed, environmental factors, and others.

**Requirements for lactating cows are at peak lactation.

Cow Stage of Production*	CP, % of DM	TDN, % of DM
2-yr-old lactating cow**	11	62
3-yr-old lactating cow**	11.5	63
mature lactating cow**	11.5	63
3-yr-old dry cow, 270 d pregnant	9	58
mature dry cow, 270 d pregnant	8	55
mature dry cow, 180 d pregnant	7	49

*Estimated dietary requirements to maintain cow body condition for Brahman influenced cows under typical production conditions (Beef Cattle NRC, 1996). These requirements will vary depending on numerous factors including animal weight, body condition, breed, environmental factors, and others. **Requirements for lactating cows are at peak lactation.

Cow Stage of Production	CP, % of DM	TDN, % of DM
2-yr-old lactating cow	11	62
3-yr-old lactating cow	11.5	63
mature lactating cow, 25 lbs of milk	11.5	63
mature lactating cow, 15 lbs of milk	10	60
3-yr-old dry cow, 270 d pregnant	9	58
mature dry cow, 270 d pregnant	8	55
mature dry cow, 180 d pregnant	7	49

*Estimated dietary requirements to maintain cow body condition for Brahman influenced cows under typical production conditions (Beef Cattle NRC, 1996). These requirements will vary depending on numerous factors including animal weight, body condition, breed, environmental factors, and others.

but....what if the cows look like this?

Components	As Fed	DM
% Moisture	8.0	l İ
% Drv Matter	92.0	<u> </u>
% Crude Protein	11.3	12.2
% Adjusted Crude Protein	11.3	12.2
% Acid Detergent Fiber	37.3	40.6
% Neutral Detergent Fiber	64.8	70.5
l% NFC I	11.6	12.6
% TDN	50	54
NEL, Mcal/Lb	.38	.41
NEM, Mcal/Lb	.42	.46
NEG, Mcal/Lb	.19	.21

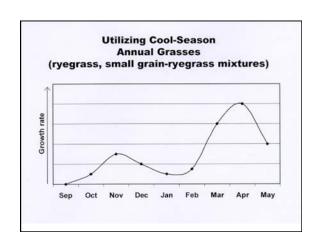
Hay Feeding Scenarios

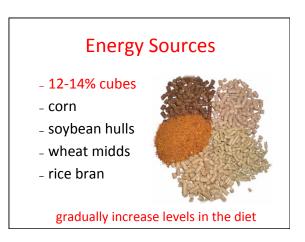
- cheap and easy
- · easiest and least expensive
- · less consistent labor, more expensive
- frequent labor when needed, less expensive

Easiest, Least Expensive

Frequent Labor When Needed, Less Expensive

What type of supplement is needed?


protein energy a combination of energy and protein



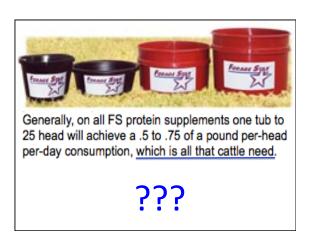
Prices quoted on: 9-9-15				
Ingredient	\$/50 lb	\$/ton	% TDN,	% СР, _{DMB}
12% cube	\$7.10	\$284	81	13.6
20% cube	\$7.80	\$312	65	22.7
20% cube, breeder	\$8.60	\$344	77	22.7
38% cube	\$10.60	\$424	75	43.2

Energy and Protein Sources

- 20% cubes "breeder"
- 20% cubes
- corn gluten feed
- distillers grains
- winter pasture
- whole cottonseed (max. 25% of diet)

gradually increase levels in the diet

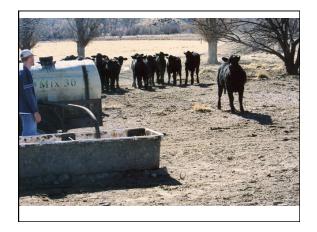
Protein Sources


- 40% cubes
- cottonseed meal
- soybean meal
- sunflower meal
- alfalfa hay
- winter pasture

Less Consistent Labor, More Expensive

Nutrient Intake

32% CP liquid (45% TDN, AFB)


intake: 2 lbsTDN intake: 0.9 lbsCP intake: 0.64 lbs

38% CP cube (67 % TDN, AFB)

- intake: 2 lbs

TDN intake: 1.34 lbsCP intake: 0.76 lbs

Can Provide More Energy

Starting Point

Hay: 45% TDN, 5.0% CP

Dry cow

goal: maintain BCS 8 lbs of 20% cubes

Wet Cow

goal: control weight loss11 lbs of 20 % cubes

Hay: 50% TDN, 6.5% CP

Dry cow

goal: maintain BCS4 lbs of 20% cubes

Wet Cow

goal: control weight loss 6 lbs of 40 % cubes Hay: 55% TDN, 9.0% CP

Dry cow

goal: maintain BCS

hay only

Wet Cow

goal: control weight loss 2 lbs of 40 % cubes

Red Flags

Lab number:

Sample Material

COASTAL

Sample ID

2 450 ND

Moisture %

(as received)

Crude Frotein %

13.4

NDF %

63.0

ADF %

37.9

IVTD%

57.5

Estimated TDN%

66.8

RFV%

57.7

I/NDF (Neutral Detergent Fiber) is a measure of fiber content which is related to forage intake.

Average NDF values are around 65%. Lower values indicate greater forage intake.

Average NDF values are around 45%. Lower values indicate greater fiber plant maturity.

Avarage ADF values are around 45%. Lower values indicate greater fiber plant maturity.

Avarage ADF values are around 45%. Lower values indicate greater fiber plant maturity.

Avarage ADF values are about 40%. Lower values indicate greater departibility.

J/IVTD (in vito T rou Departhility) is a measure of digentibility in rument plant.

Average DIVI is about 60%. Higher values indicate greater departibility.

J/IVTD is a estimated value formula that includes both cruelly protein and ADF.

J/RFV (Relative Foed Value) is a comparison with afailfa hay at 100%

The affolia 344 bloom and about 15% protein.

Forage quality:

Mediday, estimated

Average Daily Gain for a 500 b yearling:

10.

Daily intike of forage:

11.

Average Daily viain for a 1000 fl day cow:


1.32

Daily intike of forage:

24.5

This is with supplemental feeding.

Pricing Supplements

Need Protein

20% CP cube (no NPN)

- \$10.30 per 50 lb sack
- 10 lb CP per sack (50 x 0.20 = 10 lb of CP)
- \$1.03/lb of CP (\$10.30 ÷ 10 = \$1.03/lb)

38 % CP cube

- \$13.55 per 50 lb sack
- 19 lb CP per sack (50 x 0.38 = 19 lb of CP)
- -\$0.71/lb of CP ($\$13.55 \div 19 = \$0.71/lb$)

Need Energy

20% CP cube (high energy, 70% TDN, AFB)

- \$10.30 per sack
- 35 lb of TDN per sack (50 x 0.70 = 35 lb)
- $= $0.29/lb \text{ of TDN } ($10.30 \div 35 = $0.294/lb)$

38% CP cube (67 % TDN, AFB)

- \$13.55 per 50 lb sack
- 33.5 lb TDN per sack (50 x 0.67 = 33.5 lb)
- $= $0.40/lb \text{ of TDN } ($13.55 \div 33.5 = $0.404/lb)$

Need Energy

20% CP cube (high energy, 70% TDN, AFB)

- \$10.30 per sack
- 35 lb of TDN per sack (50 x 0.70 = 35 lb)
- -\$0.29/lb of TDN (\\$10.30 ÷ 35 = \\$0.294/lb)

38% CP cube (67 % TDN, AFB)

- \$13.55 per 50 lb sack
- 33.5 lb TDN per sack (50 x 0.67 = 33.5 lb)
- $= $0.40/lb \text{ of TDN } ($13.55 \div 33.5 = $0.404/lb)$

Supplementation Frequency

Frequency of Supplementation

protein supplements everyday (no NPN or antibiotics) everyday - 3 times/wk

- 2 times/wk

- 3 times/wk - 4.7 lbs - 2 times/wk - 7 lbs

- 1 time/wk?? - 1 time/wk ??

- 14 lbs

- 2 lbs

Frequency of Supplementation

- energy supplementsbest to feed everydayif feeding small amounts, can feed every other day
 - feeding at less frequent intervals can lead to big problems

feeding 3 times a week reduced ADG by 10% compared with daily feeding (Loy et al., 2008)

3 supplements, 2 supplementation levels

Cow-Calf Mineral and Vitamin Supplementation

Jason Banta, Ph.D., PAS
Associate Professor and Extension Beef Cattle Specialist
Overton, TX

mineral nutrition impacts

- · growth
- reproduction
- · milk production
- · health

Components of a Complete Mineral Supplement

- salt
- · macro minerals
- · trace minerals (aka micro minerals)
- · vitamins A, D, and E

Macro	Trace (micro)
% of diet	ppm or mg/kg
calcium	· copper
phosphorus	manganese
· magnesium	· zinc · cobalt
· ·	selenium
potassium	· iodine
sodium	
sulfur	· iron
	· others

Common Formulations

- · high-calcium, lower phosphorus
- . 12:12
- · winter pasture (higher Mg)

Differences Between Companies

- formulation
- · mineral source
- · reputation
- · palatability enhancers
- · targeted intake
- · weatherization

Cow-Calf Examples Loose Minerals

Purina

	Texas All Season 7.5 Complete	Texas All Season 12 Complete	Hi-Magnesium Complete
Calcium	14 - 16	12.5 – 14.5	13 - 15
Phosphorus	7.5	12	4
Salt	19 - 21	23 - 25	16.5 – 18.5
Magnesium	1	1	10
Potassium	1	1	0.1
Copper	2,500	2,500	1,200
Manganese	4,000	4,000	3,600
Zinc	7,500	7,500	3,600
Selenium	27	27	27
Iodine	60	60	60
Cobalt	12	12	12
Vitamin A	150,000	150,000	75,000
Vitamin D	15,000	15,000	7,500
Vitamin E	150	150	75

- 3 basic formulas, common in Texas
- Texas All Season 7.5 Complete
- Texas All Season 12 CompleteHi-Magnesium Complete

Cargill

	Emerald	Bronze	Gold
Calcium	15.5 – 16.5	11.5 – 13.5	12 - 13
Phosphorus	5	8	2
Salt	15 - 16	15 - 17	13 - 15
Magnesium	5	3	13
Potassium	0.1	2	0.2
Copper	2,500	2,500	1,500
Manganese	4,000	4,000	4,000
Zinc	4,500	6,000	4,500
Selenium	26	26	26
lodine	200	200	200
Cobalt	20	20	20
Vitamin A	100,000	100,000	100,000
Vitamin D	-	10,000	-
Vitamin E	100	110	100

Options

Additives

researched

- IGR
- CTC
- bovatec
- $_{-}\ rumens in$
- bovatec is not labeled for cows

3 basic formulas, common in Texas

- Texas All Season 7.5 Complete
- Texas All Season 12 Complete
- Hi-Magnesium Complete

Additives

researched

- IGR
- _ CTC
- boyatec
- rumensin

not well researched

Trace Mineral Considerations

Micro ("Trace") Minerals

- > copper
- > cobalt
- » manganese
- > selenium
- > zinc
- > iodine
- > iron
 - > not usually supplemented

Trace Minerals:
The Silver Bullet Right?

Which mineral(s) affect reproduction of female cattle?

- a) copper
- b) zinc
- c) manganese
- d) copper and zinc
- e) zinc and manganese
 - f) copper and manganese
 - g) all three

Which mineral(s) affect reproduction of bulls?

- a) copper
- b) zinc
 - c) manganese
 - d) copper and zinc
 - e) zinc and manganese
 - f) copper and manganese
 - g) all three

Copper

- female: no effect
- male: probably no effect

Zinc

- female: very little data in cattle, but important in ovarian remodeling and CL production
- male: impacts testicular growth

Manganese

- female: possible estrous effect
- male: no claims

The Copper Race

Inorganic vs.
Organic/Chelated

forms of inorganic

oxides sulfates carbonates

Copper sulfate	100%
Copper carbonate	120%
Copper proteinate	105%
Copper oxide	30%

Zinc sulfate 100%
Zinc oxide 95%
Zinc proteinate 130%

Organic/Chelated Minerals

- copper
- manganese
- zinc
- cobalt

PURINA® WIND AND RAIN® STORM® ALL SEASON 7.5 AVAILA® 4 COMPLETE

INGREDIENTS:

Dicalcium Phosphate, Monocalcium Phosphate, Calcium Carbonate, Salt, Processed Grain By-Products, Vegetable Fat, Mineral Oil, Magnesium Oxide, Iron Oxide, Vitamin E Supplement, Vitamin A Supplement, Silica Dioxide, Zinc Amino Acid Complex, Manganese Amino Acid Complex, Copper Amino Acid Complex, Ethylenediamine Dihydriodide, Cobalt Glucoheptonate, Vitamin D₃ Supplement, Natural and Artificial Flavors, Sodium Selenite.

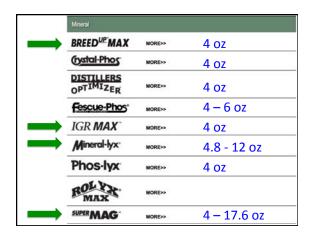
Meets 100% of zinc, copper, manganese and cobalt trace mineral requirements using Zinpro® Availa® 4 complex trace minerals at a 4 ounce consumption rate.

Contains chelated/ organic trace minerals.


INGREDIENTS

Molasses products, monocalcium phosphate, dicalcium phosphate, magnesium oxide, dehydrated seaweed meal, hydrolyzed vegetable oil, calcium carbonate, manganous oxide, manganese sulfate, manganese amino acid complex, zinc oxide, zinc sulfate, zinc amino acid complex, copper sulfate, copper chloride, copper amino acid complex, ethylenediamine dihydroiodide, calcium iodate, cobalt glucoheptonate, cobalt carbonate, sodium selenite, vitamin A acetate, vitamin D-3 supplement, vitamin E supplement, thiamine mononitrate, menadione sodium bisulfite complex, riboflavin supplement, calcium pantothenate, niacin supplement, vitamin B-12 supplement, choline chloride.

Organic/Chelated Minerals


- selenium

Crystalyx

	BreedUp Max	IGR Max	Mineral-lyx	Super Mag
Crude Protein			6	12
Calcium	6 - 7	5 - 6	3.5 - 4.5	1 - 1.5
Phosphorus	6	5	4	0.8
Salt	none	none	none	none
Magnesium	3.5	5.0	3.0	4.4
Potassium	1.7	1.5	1.7	2.0
Copper	2,000	1,000	500	330
Manganese	8,000	4,000	2,000	1,330
Zinc	6,000	3,000	1,500	1,000
Selenium	13.2	13.2	8.8	6.0
Iodine	100	50	25	17
Cobalt	65	10	5	3.3
Vitamin A	300,000	200,000	100,000	80,000
Vitamin D	30,000	20,000	10,000	8,000
Vitamin E	1,000	200	100	100

Thoughts

- · need separate source of salt
- $\cdot \ \ questionable \ formulations$
- large pastures, grazing management

Blocks

American Stockman

	Big 6	Se-90	lodized	Sulfur
Calcium				
Phosphorus				
Salt	96 - 99	95 – 98.5	97 – 99.7	95 - 97
Magnesium				
Potassium				
Sulfur				3
Copper	260 - 380	280 - 420		
Manganese	2,400	1,800		
Zinc	320	3,500		
Selenium		90		
lodine	70	100	100	
Cobalt	40	60		
Vitamin A				
Vitamin D				
Vitamin E				

American Stockman Big 68 Trace Mineralized Salt is the most popular in the eastern half of the United States. With the six core microminerals required for animal health - zinc, manganese, cobalt, copper, lodine and iron - it's the first choice for weight gain, feeding efficiencies and overall herd performance. For all classes of beef and dairy cattle, pigs and horses.

Ingredients

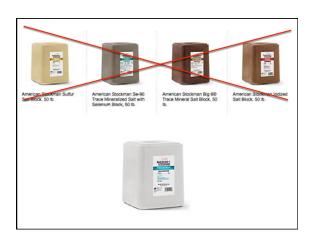
Salt, Manganous Oxide, Ferrous Carbonate, Magnesium Oxide, Copper Oxide, Zinc Oxide, Calcium Iodate, Cobalt Carbonate, Red Iron Oxide for Color.

Guaranteed Analysis:

Salt (min.) 96.0%, Salt (max.) 99.0%, Manganese (min.) 2.400 ppm, Iron (min.) 2.400 ppm, oneer (min.) 260 ppm, Copper (max.) 380 ppm, Zinc (min.) 320 ppm, Iodine (min.) 70 ppm, Cobalt (min.) 40 ppm.

Feeding instructions:

Allow livestock free access to this feed salt.



Salt, Sulfur, FD&C Yellow #5 Dye for Color.

Guaranteed Analysis:

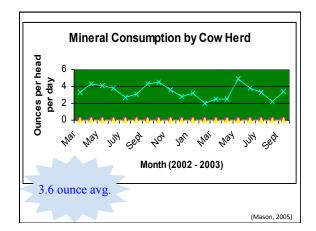
Salt (min.) 95.0%, Salt (max.) 97.0%, Sulfur (min.) 3.0%.

Injectables

Don't Make Sense To Me

GUARANTEE	LEVEL	
Calcium, (Ca) min/max %	0.0	Calcium Carbonate
Phosphorus, (P), min %	7.0	All from Tech Grade Monosodium Phosphate (26% Phosphorus, 0% Calcium and <50 ppm iron
Salt, (NaCl) min/max %	35.2-40.2	•
Sodium, (Na) min/max %	22.5-26.9	from Sodium Bicarbonate, MSP and Salt
Magnesium, (Mg) min %	2.0	Magnesium Sulfate and Oxide
Potassium, (K) min %	3.0	Potassium Chloride
Sulfur, (S) min %	4.7	from Elemental Sulfur and sulfates (trace minerals
Iron, (Fe) min ppm	0	no Iron (Fe) added (any levels incidental)
Cobalt, (Co) min ppm	50	Cobalt Carbonate
Copper, (Cu) min ppm	3000	Copper Sulfate
lodine, (I) min ppm	800	EDDI (organic)
Manganese, (Mn) min ppm	2500	Manganese Sulfate
Selenium, (Se) min ppm	50	Sodium Selenite
Zinc, (Zn) min ppm	3800	Zinc Sulfate
Vitamin A, min IU per lb	200.000	
Vitamin D3 min IU per lb	20,000	
Vitamin E, min IU per lb	200	

Mineral Feeders



Mineral Intake

- · 2 or 4 oz average consumption
- · intake varies over time
- lactation may increase intake, 2 to 2.5x

· if intake is to high

- provide free choice salt
- check location of mineral feeder
- reduce amount of mineral fed

· if intake is low

- determine if cattle are receiving salt from another source
- check location of mineral feeder

- · dual preference minerals
 - salt
 - P
- · inhibitory minerals
 - _ Mg
- · neutral or unknown preference minerals
 - Ca, K, S
 - all trace minerals

additives that stimulate intake

- molasses, yeast, other flavoring agents
- mineral oil and weatherization products

Calculating Mineral Intake

- > 35 cows
- > put 50 lbs of mineral in an empty feeder
- > mineral lasts for 6 days
- > 50 lbs ÷ 6 days = 8.33 lbs per day for the herd
- > 8.33 lbs per day ÷ 35 hd = 0.24 lbs/hd/d
- > 16 oz x 0.24 lbs = 3.8 oz/hd/d

IGR

Horn Fly Control: Feed Additives

Insect Growth Regulators (IGR) methoprene (ex. Altosid)

- · dosage 0.8 1.5 mg/100 lbs
- · 1300 cow: 10.4 19.5 mg/d

4 oz intake

- -80 gm/ton = 10 mg/d
- 120 gm/ton = 15 mg/d
- 160 gm/ton = 20 mg/d

When and What Do I Feed

FORAGE ANALYSIS

To achieve a balanced formula we do forage analysis to determine your mineral deficiencies. Upon receiving your forage analysis we are able to design a mineral mix that supplements only what is missing in your forage. Sounds like common sense, to supplement only those elements that are missing or unavailable. Yet many industry standard mixes add high levels of a mineral even though the forage has that mineral in excess. Examples are calcium and iron. That wastes money. Moreover, the bitter truth is that excessive levels of certain minerals can actually be a detriment. Our philosophy is simple, "Supplement what is missing; don't supplement what is not missing". As you can see, Texas Range Minerals are different.

Reputable Company with a Nutritionist on Staff

4 I appreciate the "custom mixing" approach of TRIM. It just makes sense that different areas of the country would need different levels of different minerals. We have had excellent grass gains on the yearling minerals, up to an extra 34 of a pound, for a low cost and that is important to me. Keep up the good work!

"We have noticed that calves on this program are much healthier, consume better and convert feed better."

When should I feed a cow-calf mineral?

- ideally year round
- last 3, first 3

Mineral Supplementation: Cows

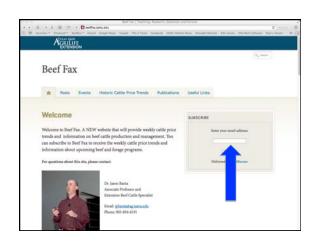
fertilized pasture or hay

- complete high Ca low P mineral (2.5:1 or 3:1)

cows on winter pasture

- complete high Ca low P mineral
- with moderate Mg level

provide vitamin A during drought and winter if not grazing winter annuals


What do I look for in a good 4 oz mineral for cows?

- · proper intake
- · about:
 - 15-18% Ca
 - 3-6% P
 - 1,500 ppm Cu
 - 6,000 ppm Zn
 - 15-20% salt

