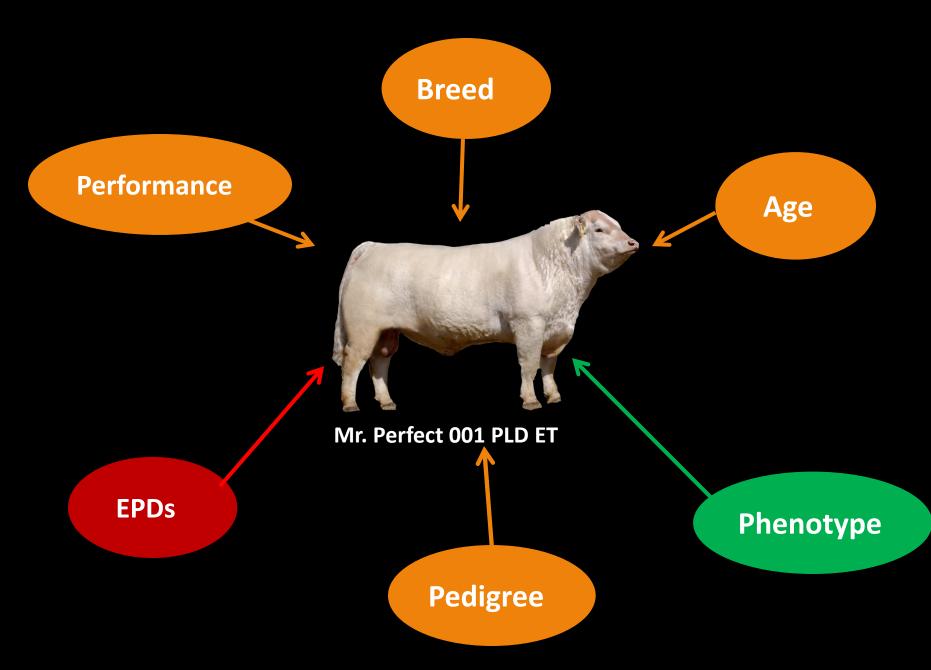
Selecting the Right Replacement

Robert S. Wells, Ph.D., PAS Livestock Consultant THE SAMUEL ROBERTS **NOBLE** FOUNDATION



The **Bull** should <u>fit</u> the <u>Market</u>

Make 'em all one color!

Phenotype

Structurally correct Balanced Thick, long, tall Lots of guts and butt! **Heavy muscle Correct angles Testicle size and shape**

Use Registered Bulls

Things are not always what it appears to be

Expected Progeny Difference (EPD)

An Estimate of how future progeny of each sire are expected to perform relative to the progeny of other sires listed in the database.

Smaller Number is Better:

Birth weightBack fat

Larger Number is Better: – Weaning Weights – Yearling Weights

Larger Number is Better:

- Calving Ease
- Maternal traits
- Milk
- Calving Ease Maternal

Larger Number is Better:

- Carcass weight
- Rib Eye Area
- Marbling

Which EPD's should I use????

Suggested EPD's

- Birth
 - **-Top 50%**

Suggested EPD's

Top 20%
 –Weaning weight
 –Yearling weight

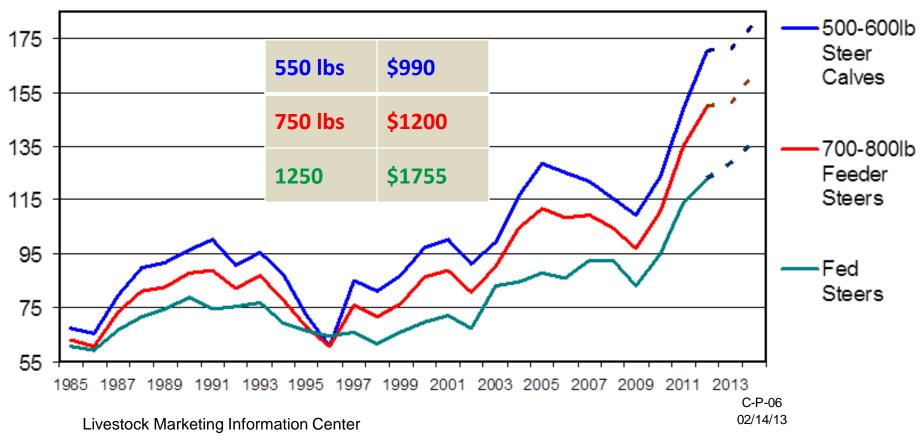
AND EN MALTINGE

Suggested EPD's

- Carcass:
 - -**Top 50%**
 - Rib Eye Area
 - Marbling

EPD's are not currently available for disposition (except Angus).

If you can't hold him you don't need him


Value of Known Bull Genetics

ANNUAL AVERAGE CATTLE PRICES

Southern Plains

Data Source: USDA-AMS, Compiled & Analysis by LMIC

Neighbor or Friend Individual Performance Information No EPD's No known or reliable ancestral history

Purchase price \$2500 Salvage weight of Bull 1850 lbs \$0.80 / Ib Salvage price of bull \$1465.20 Salvage value of bull (-1% death loss) \$ 206.96 Cost of bull, yr (5 yr life span in herd)

Cost of bull (5 yr life span in herd)\$206.96Cash maintenance cost, /yr\$400.00Total cash cost of bull, /yr\$606.96Cows/yr bred25Cash cost, /cow/yr\$ 24.28

Reputable Breeder Individual Performance Information & EPD's

Purchase price Salvage weight of Bull Salvage price of bull Salvage value of bull (-1% death loss) \$1584.00 Cost of bull (5 yr life span in herd)

\$4500 2000 lbs 0.80/ lb \$ 583.20

Cost of bull (5 yr life span in herd)\$ 583.20Cash maintenance cost, /yr\$ 500.00Total cash cost of bull, /yr\$1083.20Cows/yr bred25Cash cost, /cow/yr\$ 43.33

Yearly Per Cow Bull Cash Costs

	Bull # 1	Bull #2
Bull Purchase Price	\$2500	\$4500
Total Annual Bull Cash Costs/cow	\$24.28	\$43.33
Bull #1/Cow Advantage	XX	(\$19.05)

Increased Value at Weaning

(October 2017, projected)

	Bull #1 520 lbs @ Weaning	Bull #2 585 lbs @ weaning
Selling price, \$/lb	\$ 1.4374	\$ 1.3634
Value of calf	\$ 754.64	\$ 818.04
Bull #1/Cow Advantage	XX	(\$19.05)
Adjusted Calf Value	\$ 754.64	\$ 798.99
Difference	XX	\$ 44.35
Increased Revenue \$/25 cows/yr	XX	\$1,108.75
Net increase revenue \$/bull (5 yr) (-\$290.25)	XX	\$5,544.43

Increased Value after Backgrounding (Dec. 2017, projected)

	Bull #1 655 lbs @ Backgrounding	Bull #2 779 lbs @ Backgrounding
Selling price, \$/lb	\$ 1.2536	\$ 1.2036
Value of calf	\$ 821.11	\$ 937.30
Bull #1/Cow Advantage	XX	(\$ 19.05)
Adjusted Calf Value	\$ 821.11	\$ 918.25
Difference	XX	\$ 97.14
Increased Revenue \$/25 cows/yr	XX	\$2,428.50
Net increase revenue \$/bull (5 yr)	XX	\$12,143.24

Bull Expense													
	Salvage value,									Bull			
	Purchase		Mature	Salvage			Annual Ownership		Depreciation +		cost/cow/		Difference/
	price	yrs of service	weight	price; \$/lb	Salvage value	loss)	Cost	Depreciation	Annual Costs	# cows/bull	yr	difference	cow/yr
bull 1	\$2,500.00	5	1850	\$0.80	\$1,480.00	\$1,465.20	\$400.00	\$206.96	\$607	25	\$24.28		
	\$4,500.00										\$43.33	(\$476)	(\$19.05)

Bull Income (weaning)

								additional value; 5
	weaning			revenue/	Income	difference in	total difference;	yr life of bull at
	wt/lbs	\$/lb; Oct 2017	\$/hd	bull/yr	difference/yr	r expenses	\$/hd	weaning
bull 1	525	\$1.44	\$754.64	\$18,866				
bull 2 (better bull)	600	\$1.36	\$818.04	\$20,451	\$63.41	(\$19.05)	\$44.36	\$5,544.43

Bull Income (After Preconditioning)

	additional value; 5 yr life of bull days of \$/lb; Dec revenue/ Income difference in after										
	ADG	preconditioning	sale wt/lbs	2017	\$/hd	bull/yr	difference/yr	expenses; \$/yr	total difference	preconditioning	
bull 1	2	65	655	\$1.25	\$821.11	\$20,528					
bull 2 (better bull)	2.75	65	779	\$1.20	\$937.30	\$23,433	\$116.20	(\$19.05)	\$97.15	\$12,143.24	

www.beefbasis.com

Wean Date	10/2/2017
Preconditioning marketing date	12/6/2017

Now add the price you were willing to pay for the Neighbor's bull (\$2,500) to the increased revenue the better bull provides (\$5,544.43) = <u>\$8,044.43</u> <u>Bull Breakeven price at weaning</u>.

Now add the price you were willing to pay for the Neighbor's bull (\$2,500) to the increased revenue the better bull provides (\$12,143.24) = <u>\$14,643.24</u> Bull Breakeven price after a preconditioning program.

Take Home Message


The more expensive bull that has high quality performance traits will typically make you more money in the long run.

Make a Game Plan

Select breed

- Develop a mindset that you are going to buy an <u>individual within the breed</u> of choice rather than just buying the breed of choice.
- Review the Data
- Evaluate physically
- Set a purchase price

HERD BULL PROSPECTS

Magnum 1628 / Lot 113

SW

Magnum 1565

Birth Date: 9-7-2011 B/R Magnum 399 Magnum 8563 16060112 B/R Lantz Blackcap 6203

#B/R Destination 727 B/R Blackcap Empress 127 13879676 #B/R Blackcap Empress 8183

Bull +16987172 Tattoo: 1565

#Basin Max 602C #B/R Blackcap Empress 8183 #B/R Destination 727-928 B/R Lantz Blackcap 3209

#GAR Traveler 1489 B/R Ruby of Tiffany 5113 #B/R New Design 323 B/R Blackcap Empress 558

B/R Magnum 399 Magnum 8563 16060112 B/R Lantz Blackcap 6203

#B/R Destination 727 B/R Blackcap Empress 127 13879676 #B/R Blackcap Empress 8183

WW

+61

\$F

365 WT

1114

YW

ADJ IMF

3.39

+112

+50.33

Magnum 1628 Birth Date: 9-12-2011 Bull +16992135

1+19

Non-Parent Males

• Top 2% YW

• Top 3% Marb

• Top 3% WW

#Basin Max 602C

MILK

+22

IMF RATIO

88

\$G

Tattoo: 1628

MRB

+.92

REA RATIO

97

\$B

#B/R Blackcap Empress 8183 #B/R Destination 727-928 B/R Lantz Blackcap 3209

#GAR Traveler 1489 B/R Ruby of Tiffany 5113 #B/R New Design 323 B/R Blackcap Empress 558

CWT

+52

ADJ REA

10.5

+35.80

ED	BW	WW	YW	DOC	MILK	CWT		a part and a start of the	at the second			
+5	+3.1	+58	+104	1+19	+22		MRB	RE	CED	BW		
T BW	205 WT	365 W	T ADJ	and of the local division in which the local division in which the local division in the	RATIO		+1.07	+.51	1+5	+3.4		
83	701	973			24	ADJ REA 10.3	REA RATIO	ADJ SC	ACT BW	205 WT		
+	26.29	\$F	+42.46			the second day of the second d	95	35.07	85	746		
					133.10		\$B +87.33		\$W +25.32			
Non-Parent Males										LUIUL		
• Top 1% \$B • Top 1% Marb			• Top 10% \$F			• 1	on 10%					
			• Top 10% \$G				• Top 10% YW			• Top 1% \$B		
• Top 2% CW • Top				p 10% V	10% WW				1% CW			
UMB	ER 3 MB	EPD .	NUMBE	Constant States					• Top	2% \$F		

NUMBER 3 MB EPD
 NUMBER 5 ADJ IMF Fall Yearling

• Top 20% \$G

+86.27

RF

+.47

ADJ SC

41.23

Review the Data

eakdown		Age as of (Months)				
I ID	DOB	5/1/2009	BWRank 💽	BW 🔽	ww 💌	WWBank 🖃 YW
7589 P	9/29/07	19	15%	-0.9	34	10%
595 P	10/22/07	19	20%	-0.7	34	10%
5 P	9/26/07	19	30%	0	41	2%
7597 P	9/21/07	20	35%	0.2	42	2%
04 P	10/19/07	19	35%	0.2	35	8%
045 P	10/25/07	18	35%	0.2	31	20%
7119 P	10/5/07	19	35%	0.2	31	20%
73003	9/18/07	20	40%	0.4	40	3%
3010 P	10/19/07	19	40%	0.4	28	30%
7016 P	9/27/07	19	45%	0.6	39	4%
	10/8/07	19	50%	0.8	40	3%
3 P	10/5/07	19	55%	1.1	43	1%
0 P	10/8/07	19	55%	1.1	43	1%
3 P	9/17/07	20	55%	1.1	38	4%
7N71 P	9/21/07	20	55%	1.1	38	4%
53 P	10/2/07	19	60%	1.3	42	-2%
035 P	10/4/07	19	60%	1.2	39	4%
319 P	10/26/07	18	60%	1.3	37	6%
, ,	10/11/07	19	60%	1.3	33	15% 38

Home | Journal | Juniors | Performance | Registration | Headquarters | Promotion | Site | Search

Performance Basics SEP • Terminal Profit Index• Fall EPD Statistics • Monthly Column • Articles Ultrasound Seedstock Tour

Performance > Fall EPD Statistics > Percentile Rank

PERCENTILE RANK TABLES

	Non-Parent Percentile Ranking								
[Percent	BW EPD	WW EPD	YW EPD	MAT EPD	TOTMAT	SC EPD		
	1	<= -5.0	>= 45.6	>= 80.1	>= 21.7	>= 36.4	>= 1.5		
	2	-4.0	42.3	75.4	19.5	34.0	1.3		
	3	-3.5	40.5	71.8	18.2	32.6	1.2		
	4	-3.1	38.8	68.5	17.5	31.6	1.2		
	5	-2.7	37.9	66.3	16.8	30.7	1.1		
	6	-2.5	37.1	64.6	16.2	30.0	1.1		
	7	-2.3	36.2	63.4	15.6	29.4	1.1		
	8	-2.0	35.4	62.0	15.1	28.7	1.0		
	9	-1.9	34.7	60.9	14.8	28.1	1.0		
	10	-1.7	34.2	59.7	14.4	27.5	1.0		
	15	-1.1	31.7	55.3	12.8	25.4	0.9		
	20	-0.6	29.7	51.7	11.6	23.6	0.8		
	25	-0.2	28.1	48.8	10.5	22.2	0.8		
	30	0.1	26.6	46.3	9.6	21.0	0.7		
	35	0.4	25.3	44.0	8.8	20.0	0.7		
	40	0.7	24.0	41.8	7.9	19.0	0.6		
	45	0.9	22.7	39.9	7.1	18.0	0.6		
	50	1.2	21.3	37.8	6.3	17.0	0.5		
	55	1.5	20.0	35.8	5.5	16.0	0.5		
			10.0						

38

Evaluate in person

Replacement Females

Don't go to the weekly cattle sale

In business to produce **Beef**

Develop a Plan

When are you going to market the cattle?

5335 W

Sell at Weaning...

(Chan dirit)

Replacement Heifers

• What Breeds Should you consider? -Types Heterosis - Complementarity effects -Marketing goals What is the Right Cow Type? What is the Right Bull? Where to buy cattle?

2 Subspecies of Cattle

Bos taurus

- British breeds (Angus, Hereford)
- Continental breeds (Charolais, Simmental, Limousin, Gelbvieh, etc.)
- Bos indicus (Zebu, humped cattle)
 - Brahman
 - Nelore
 - Gir, etc.

Pure Breeds

Angus (British)

Reputation: Carcass and Maternal

Hereford (British)

Reputation: Maternal, easy fleshing, longevity

Simmental (Continental)

Reputation: Maternal and growth

Simmental (Continental)

Gelbvieh (Continental)

Reputation: Maternal and growth

Gelbvieh (Continental)

Limousin (Continental)

Ter.

A. A.C.

Reputation: Growth

Charolais (Continental)

Reputation: Growth

Shorthorn

Reputation: Maternal and Carcass

Longhorn

Reputation: Hardiness, Lean beef

Reputation: Hardiness, roping stock

Corriente

Composites or

Cross Breds

Black Baldy

Super Baldy

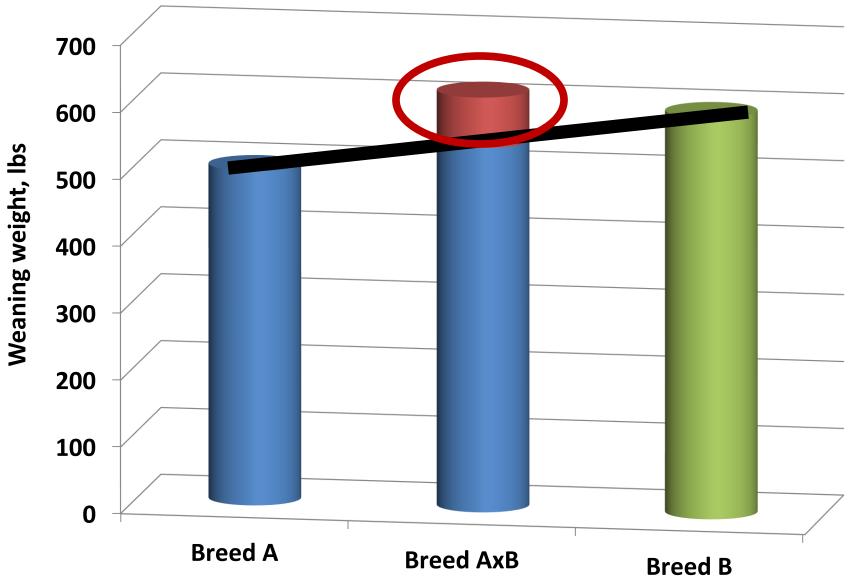
Commercial Angus

Ultra Black

X RIV

Balancer

-


Hybrid vigor = Heterosis

Hybrid Vigor

 The increase/decrease in a particular trait when compared to the average of that trait for each parent.

 Maternal hybrid vigor increases calving rate (6%), weaning rate (8%), weaning weight (6%), and birth weight (2%).

Heterosis = Hybrid Vigor

Maximum Heterosis

F1 x F1 Cross Parents are from 4 unrelated breeds

Tiger Stripe Cow: Brahman X Hereford LimFlex Bull: Angus x Limousin

Decreases Uniformity, especially in multiple bull herds.

(2+3)/2 = 3.5

Levels of Heterosis

Trait	Individual Heterosis, %	Maternal Heterosis, %	Total Heterosis, %
Weaning rate	0	8	8
Age @ Puberty	-3		-3
Birth weight	4	2	6
Weaning weight	5	6	11
Yearling weight	4		4
Cow Condition	-4		-4
Carcass weight	3		3
USDA quality grade	2		2
Rib eye area	2		2
Feed conversion, (F:G)	-2		-2
Days on feed	-4		-4
Calf WW/exposed cow			18
Cow longevity			38
Cow lifetime productivity			25 ⁷⁸

Economics of Heterosis

- What does it cost?
- It depends.
- Cow size
 - About 6 % increase/100 lbs BW
- Milk production
 - ~1.5 % increase in energy/lb of milk
 - -~2.7 % increase in CP/lb of milk
- Make sure she fits your environment
 - Stocking rate
 - Supplemental feed

Economics of Heterosis-Angus cow x Terminal bull Original Scenario:

- 100 cows; Angus cow x Angus Bull
- 525 lb weaning weight
- Average weaning rate 82%
 43,050 lbs marketed

Switch to

Angus cow x Beefmaster bull
Individual heterosis (+5%)

551 lb weaning weight F1 calf

45,203 lbs marketed
+2152 lbs/year = +\$5,725.65/year

Economics of Heterosis-F1 cow x Terminal bull

Original Scenario:

- Angus cow x Angus bull
- 525 lb weaned calf
- Average weaning rate 82%
- 43,050 lbs marketed

Switch to

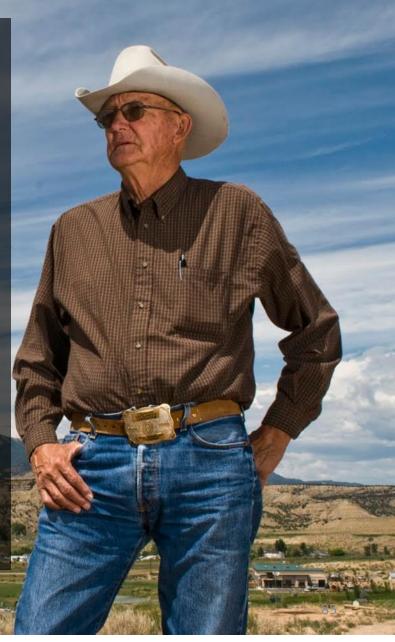
- F1 cow X (Terminal Bull Breed C)
- +WW total heterosis +25% {个 Weaning rate (90%) & weight(11%)}

Capturing Heterosis

System	% Max Heterosis	% Increase in Calf Wt./Cow Exposed
Pure breeds	0	0
2 breed rotation	67	16
3 breed rotation	86	20
2 breed composite	50	12
3 breed composite	63	15
Term. Sire/purch. F1 female	100	23-28

Economics of Heterosis-F1 cow x Terminal bull

Original Scenario:


- Angus cow x Angus bull
- 525 lb weaned calf
- Average weaning rate 82%
 43,050 lbs marketed <u>Switch to</u>
- F1 cow X (Terminal Bull Breed C)
- +WW total heterosis +25% {↑ Weaning rate (90%) & weight(11%)}
- 656 lb calf ≻+131 lbs
- 59,040 lbs
- +15,990 lbs = +\$40,295

Economics of Heterosis

+\$5,725.65 increased weaning weight (Bull Affect) - Angus cow x terminal bull - (1/2 Angus Calf x 1/2 Terminal bull breed calf) +\$40,295 increase in weaning rate & weight - F1 cow x terminal bull breed - (1/2 F1 x Terminal bull breed calf) Keep after weaning and \$\$\$ increase as you can take advantage of additional heterotic effects of *improved growth rates*

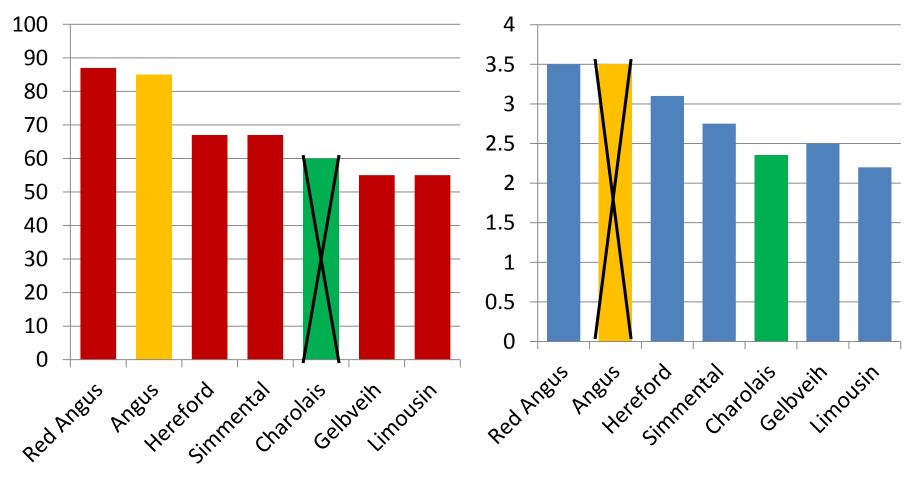
Parting Thoughts

 Must be able to manage for the benefits Heterosis will not make up for poor animal husbandry/management Heterosis will not make up for poor bull selection

Heritability vs. Heterosis

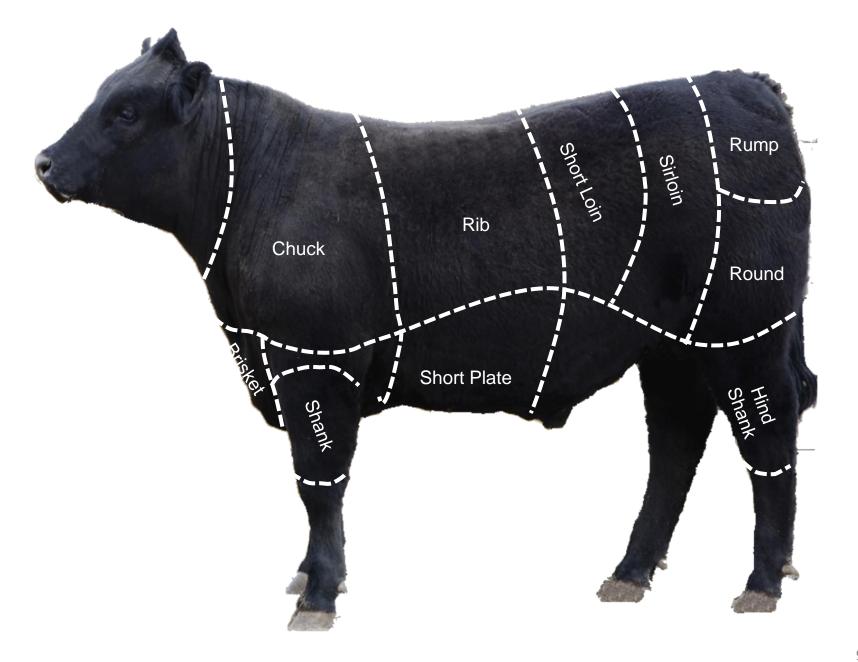
Heritability

Traits h^2 MagnitudeReproductive<.2</td>LowGrowth.2-.4ModerateCarcass.4-.6High


Few traits have $h^2 > .6$

Heritability Estimates

Height	0.85
REA	0.70
Tenderness	0.60
Birth weight	0.45
Feedlot gain	0.34
Weaning weight	0.24
Fertility	0.10
Calving interval	0.08
Conception rate	0.07


Breed Complementarity

Breed Complementarity

Quality Grade; % Choice

Yield Grade

Lost Opportunities

Quality Grade		-\$25.25
Yield Grade	-\$37.77	-\$5.77
Carcass Weight		-\$6.75
Offal		-\$5.15
Hide/Branding		- \$0.74
Total		-\$43.66

NBQA 2011

USDA Quality and Yield Grade Distribution

USDA Yield Grade	Prime, %	Choice, %	Select, %	Other, %
1	0.0	3.6	7.3	1.4
2	0.4	22.8	15.3	2.4
3	1.8	25.9	8.0	1.5
4	0.5	6.3	1.4	0.4
5	0.1	1.3	0.1	0.1

NBQA 2011

Table 1. Example Grid, as Presented by a Packer (\$/dressed cwt.)

Choice YG3 550-950 lbs.	Base Price
Prime-Choice Price Spread	+6.00
Choice-Select Price Spread	-6.00
Select-Standard Price Spread	-10.00
Yield Grade 1	+5.00
Yield Grade 2	+3.00
Yield Grade 4	-20.00
Yield Grade 5	-25.00
Dark Cutters	-20.00
Light Carcasses (<550 lbs.)	-10.00
Heavy Carcasses (>950 lbs.)	-20.00

Carcass Grid

USDA Yield Grade	Prime, %	Choice, %	Select, %
1	\$11	\$5	-\$1
2	\$9	\$3	-\$3
3	\$6	\$0	-\$6
4	-\$14	-\$20	-\$26
5	-\$19	-\$25	-\$31

Dark Cutter =-\$20; Light Carcass (<550 lbs) = -\$10; Heavy Carcass (>1000 lbs) = -\$20

Breed Complementarity

The Ideal Cow

The Ideal Cow

- Early puberty
- Never misses a breeding season (1 calf/365 d)
- Calves unassisted
- Doesn't require a lot of supplemental feed
- Easy fleshing
- Converts forage to lbs of raised calf
- Stays in the herd a long time
- Good temperament
- Good muscling and carcass characteristics
- Adequate but not too much milk
- Looks good doing all the above

The Ideal Cow

Easy fleshing

Good Udder

www.www.uketerrienfediktreakerin

101

Broken Down Udder

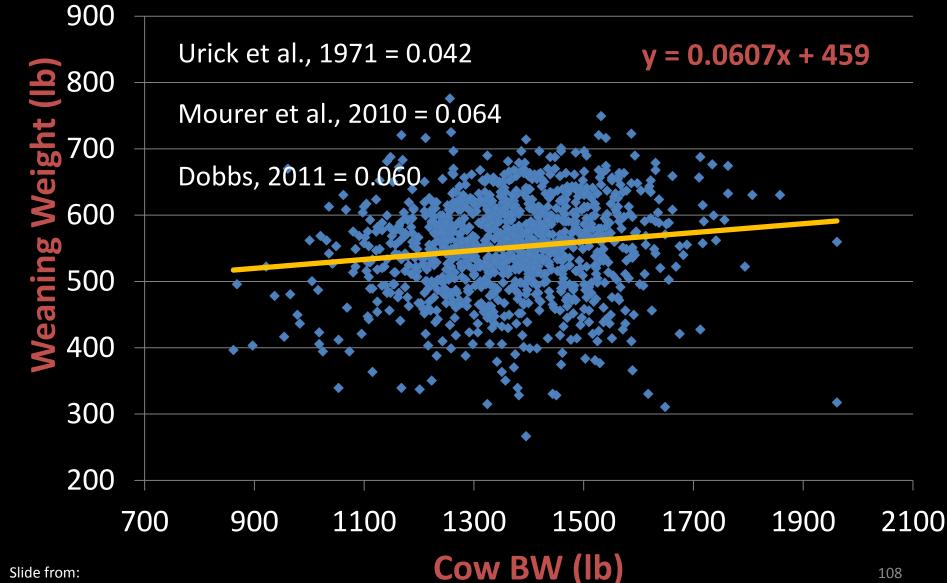
Match cow to Environment

Function efficiently in *My* **environment** Climate

Management

Forage base

Terrain

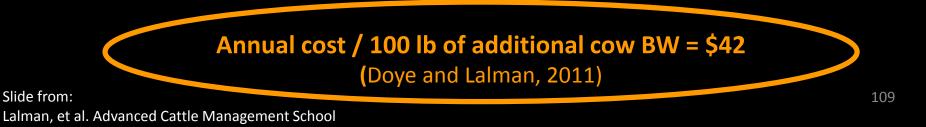

Pasture size

Distance to water

Function efficiently in <u>My</u> environment Cow Size

Milk production

Calf WW vs Cow BW



Lalman, et al. Advanced Cattle Management School

108

Sensitivity Analysis

Value of Added Gain (\$/cwt)	Value of Added Income ¹ (\$/cwt)
0.80	4.86
1.00	6.07
1.20	7.28

Summary

• Every 100 lb increase in additional cow BW resulted in 6.07 lb increase in weaning weight

Every 1 lb increase in birth weight resulted in
 2.07 lb increase in weaning weight

 The response determined (6.07 lb) was only 11%-17% needed to breakeven to offset the cost of the larger cow size Function efficiently in <u>My</u> environment Cow Size

Milk production

Nutrient Requirements100# Cowvs1300# CowAverage Milk

	Calving to Breeding			Breeding to Weaning		Weaning to Last 1/3		Last Trimester	
Dry Matter, lbs	26.4	29.1	25.5	28.5	21.4	24.2	22.7	25.8	
CP, lbs	2.75	3.06	2.18	2.5	1.41	1.6	1.93	2.03	
TDN/Energy, lbs	15.5	17.3	14.3	15.7	10.1	11.4	11.9	13.57	

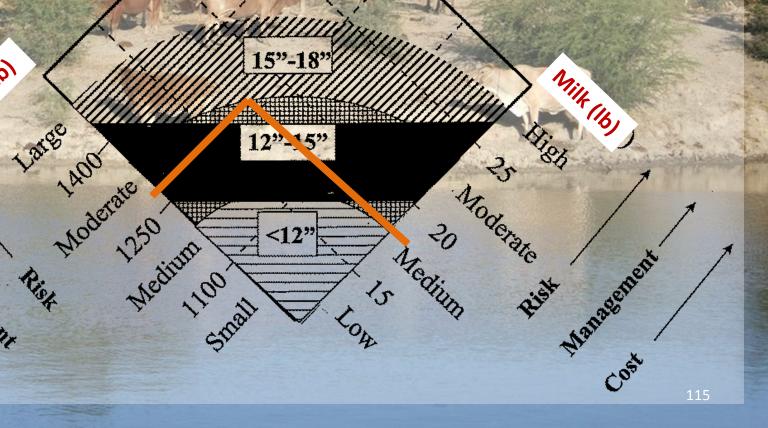
How does cow size affect stocking rate?

500 acre property

- (100 grazable, no brush)
- Forage production (2300 lbs/ac.)
 - Average/good production 115 lbs/ac. in.
 - 30% utilization = 690 lbs edible forage/ac (as fed)
 - <u>550 lbs dry matter basis</u>
 - 550 lbs/ac * 500 ac = 275,000 lbs available forage
- 1100 lb. cow consumes 26.4 lbs/d (9,636 lbs/yr)

1300 lb. cow consumes 29.1 lbs/d (10,621 lbs /yr)

The <u>cow</u> should <u>fit</u> her <u>environment</u>



Match cow and environment

>18"

Weight (10)

Management Cost

Weaning a calf is 5x more important than growth

A cow's ability to wean a calf (reproductive performance) is directly related to how well she fits my environment.

The <u>cow</u> should <u>fit</u> her <u>environment</u>

What happens if she doesn't:
Body condition score is low
Rebreeding rate is low
Weaning weights are affected.
Increase in supplemental feed and hay requirements

THE SAMUEL ROBERTS **INDESTIGATION**

Robert S. Wells, Ph.D. PAS rswells@noble.org 580-224-6434